OpenFOAM® v1906: New and updated solvers and physics
Heterogeneous reacting cloud
New heterogeneous reacting cloud functionality has been added to the Lagrangian library. This cloud is initially formed of a single solid component which reacts with the gas phase to create a solid product in the particles through a reaction of the type
MUCSheterogeneousRateCoeffs
{
D12 2.724e4;
epsilon 0.41;
gamma 3.07;
sigma 1;
E 1;
A 3.14e4;
Aeff 0.7;
Ea 1.651e5;
O2 O2;
nuFuel 2.0;
nuProd 3.0;
nuOx 0.5;
fuel Fe3O4;
product Fe2O3;
}
The initial particle composition is specified in the reactingCloud1Properties dictionary:
{
phases
(
gas
{
}
liquid
{
}
solid
{
Fe3O4 1;
Fe2O3 0;
}
);
YGasTot0 0;
YLiquidTot0 0;
YSolidTot0 1;
}
 Source code
 $FOAM_SRC/lagrangian/intermediate/submodels/HeterogeneousReactingModel
 Solver
 $FOAM_SOLVERS/lagrangian/reactingParcelFoam/reactingHeterogenousParcelFoam
 Tutorial
 $FOAM_TUTORIALS/lagrangian/reactingHeterogenousParcelFoam/rectangularDuct
 Reference
 D. Papanastassiou and G. Bitsianes, Modelling of Heterogeneous GasSolid Reactions, Metallurgical Transactions, 480. Volume 4. 1973
interIsoFoam/isoAdvector with morphing meshes
The isoAdvector geometric Volume of Fluid method used by the interIsoFoam solver has been extended to work with morphing meshes. This is useful for a wide range of applications, e.g. generation of realistic water waves by moving domain sidewalls.
The following video shows a surface that correctly remains flat (calm) under the action of a moving mesh.
 Source code
 $FOAM_SRC/finiteVolume/fvMatrices/solvers/isoAdvection
 Solver
 $FOAM_SOLVERS/multiphase/interIsoFoam
 Known issues
 The current implementation should only be used with the Euler ddtScheme in the fvSolution dictionary
 Acknowledgements

 The code extension was provided by Johan Roenby, STROMNING
 The calmWater tutorial was provided by Zhaobin LI, Ecole centrale de Nantes
Multiphase extensions from openfoam.org
 Expanded MULES/CMULES interfaces to incorporate templated arguments for psiMax and psiMin.
 Reworking and expansion of the framework for species thermodynamic to handle internal energy (e) consistently.
 Incorporation of population balance model in the phase system for multiphase Euler solvers.
 Incorporation of alphatWallBoilingWallFunction to handle the subcooling nucleating boiling regime
overBuoyantPimpleDyMFoam
The new overBuoyantPimpleDyMFoam solver adds overset capabilities to the buoyantPimpleFoam solver.
 Source code
 $FOAM_SOLVERS/heatTransfer/buoyantPimpleFoam/overBuoyantPimpleDyMFoam
 Tutorial
 $FOAM_TUTORIALS/heatTransfer/overBuoyantPimpleDyMFoam/movingBox
chtMultiRegionTwoPhaseEulerFoam
The new chtMultiRegionTwoPhaseEulerFoam solver combines the functionality of reactingTwoPhaseEulerFoam and chtMultiRegionFoamfor solving solid/fluid coupled systems. Region interfaces are coupled using the turbulentTemperatureTwoPhaseRadCoupledMixed boundary condition.
Transitional and film boiling regimes now complement the earlier single phase and nucleating boiling regimes available in the alphatWallBoilingWallFunction boundary condition to model the heat transfer coefficient for boiling flows in general.
The wall function uses a partition method to transfer heat either to the liquid or vapour phase. Currently this function works in a fixed wall temperature mode. i.e, there is no consideration for the sudden change of heat transfer coefficient (burn out) after reaching the deviation from nucleate boiling temperature, . See Srinivasan et al. (2010).
For the single phase nonboiling regime the standard Jayatilleke wall function is used. For the subcooled nucleate boiling regime the following runtime selectable submodels are available:
 nucleation site density
 bubble departure frequency
 bubble departure diameter
This is based on a version of the wellknown RPI wall boiling model (Kurul and Podowski, 1991). The implementation is similar to the model described by Peltola and Pattikangas (2012) but enhanced with the wall heat flux partitioning models.
The transition boiling regime flux () is modelled following a temperature based linear interpolation between the Critical Heat Flux () and the Minimum Heat Flux () in such a way that when the wall temperature is between the range of Deviation From Nucleate Boiling () and the Leidenfrost Temperature () a linear interpolation is used between and .
The following models are required:
 Leidenfrost Temperature Model
 Model
 SubCool Model
 Model
 Model
 Film Boiling Model
The linear interpolation is as follows for the TBF regime is calculated as:
where :
where is a model constant (default 1) and the wall temperature. The film boiling regime is applied when is larger than . In this regime the correlation from the film Boiling Model is used for calculating the cht from the wall.
The subcooled model modifies when subcooled conditions are present. The following submodels are implemented:
 Critical heat flux (CHF) correlation. See Zuber (1958)
 Film Boiling Model. See Bromley (1950)
 Minimum heat flux (MHF) model. See Jeschar et. al. (1992)
 Leidenfrost temperature model. See Spiegler et. al. (1963)
 Critical heat flux for SubCool boiling flows. See Hua and Xu (2000)
 Departure from Nucleate Boiling Correlation. See Thelera and Freisba ()
 Source code
 $FOAM_SRC/phaseSystemModels/reactingEulerFoam/derivedFvPatchFields/alphatWallBoilingWallFunction
$FOAM_SRC/heatTransfer/chtMultiRegionFoam/chtMultiRegionTwoPhaseEulerFoam  Tutorial
 $FOAM_TUTORIALS/heatTransfer/chtMultiRegionTwoPhaseEulerFoam/solidQuenching2D
 References

 Numerical simulation of immersion quenching process of an engine cylinder head Vedanth Srinivasan, KilMin Moon, David Greif, De Ming Wang, Myunghwan Kim. Applied Mathematical Modelling 34 (2010) 21112128
 On the modeling of multidimensional effects in boiling channels, Kurul, N., Podowski, M.Z., ANS Proceedings, National Heat Transfer Conference, Minneapolis, Minnesota, USA, July 2831, (1991)
 Development and validation of a boiling model for OpenFOAM multiphase solver, Peltola, J., Pattikangas, T.J.H., CFD4NRS4 Conference Proceedings, paper 59, Daejeon, Korea, September 1012 (2012)
 A. Bromley, Heat transfer in stable film boiling, Chem. Eng. Prog. 58 (1950) 6772.
 N. Zuber, On the stability of boiling heat transfer, Trans. ASME 80 (1958) 711
 Jeschar, E. Specht, C. Kohler, Heat Transfer during Cooling of Heated Metallic Objects with Evaporating Liquids, Theory and Technology in Quenching, Springer, (1992). Chapter 4.
 Spiegler P., Hopenfeld J., Silberberg M., Bumpus J. and Norman A., Onset of stable film boiling and the foam limit, International Journal of Heat and Mass Transfer, 6,11, pp.987989, (1963)
 T.C. Hua, J.J. Xu, Quenching boiling in subcooled liquid nitrogen for solidification of aqueous materials, Mater. Sci. Eng. A 292 (2000) 169172.
 Theoretical Critical Heat Flux Prediction Based NonEquilibrium Thermodynamics Considerations The Subcooled Boiling Phenomenon Thelera G. and Freisba D.. TECNA Estudios y Proyectos de Ingeniera S.A. Encarnacion Ezcurra 365, C1107CLA Buenos Aires, Argentina Westinghouse, Electric Germany GmbH, Dudenstrasse 44, 68167 Mannheim, Germany
Reflective radiation model extension
The solar load model now incorporates reflecting radiative fluxes, enabling reflections to be calculated on specular surfaces.
Reflection effects are enabled by the new useRefectedRays entry in the radiationProperties dictionary, i.e.
reflecting
{
nPhi 10;
nTheta 10;
}