Bibliography
[1]

M Alletto, A Radi, J Adib, J Langner, C Peralta, A Altmikus, and M Letzel. E-wind: Steady state cfd approach for stratified flows used for site assessment at enercon. In Journal of Physics: Conference Series, volume 1037, page 072020. IOP Publishing, 2018.

[2]

L.J. Amoreira and P.J. Oliveira. Comparison of Different Formulations for the Numerical Calculation of Unsteady Incompressible Viscoelastic Fluid Flow. Advances in Applied Mathematics and Mechanics, 2(4):483–502, 2010.

[3]

David D Apsley and Ian P Castro. A limited-length-scale k-ε model for the neutral and stably-stratified atmospheric boundary layer. Boundary-layer meteorology, 83(1):75–98, 1997.

[4]

R. Barrett, M. Berry, T.F. Chan, J. Demmel, J.M. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994.

[5]

P.L. Betts and I.H. Bokhari. Experiments on turbulent natural convection in an enclosed tall cavity. International Journal of Heat and Fluid Flow, 21(6):675–683, 2000.

[6]

J. Boussinesq. Essai sur la théorie des eaux courantes. Imprimerie Nationale, Paris, France, 1877.

[7]

J. Bredberg. On the wall boundary condition for turbulence models. Technical Report Internal Report 00/4. Sweden: Göteborg, Chalmers University of Technology, Depart. of Thermo and Fluid Dyn., 2000.

[8]

T. Burton, N. Jenkins, D. Sharpe, and E. Bossanyi. Wind energy handbook, 2nd edition. John Wiley & Sons, Chichester, the United Kingdom, 2011.

[9]

L.S. Caretto, A.D. Gosman, S.V. Patankar, and D.B. Spalding. Two Calculation Procedures for Steady, Three-Dimensional Flows With Recirculation. In Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, volume 19 of Lecture Notes in Physics, pages 60–68. Springer, 1972.

[10]

G. Comte-Bellot and S. Corrsin. Simple Eulerian time correlation of full- and narrow-band velocity signals in grid-generated, `isotropic' turbulence. Journal of Fluid Mechanics, 48:273–337, 1971.

[11]

J. Crank and P. Nicolson. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Mathematical Proceedings of the Cambridge Philosophical Society, 43(1):50–67, 1947.

[12]

A.A. Dafa'Alla, E. Juntasaro, and M.M. Gibson. Calculation of oscillating boundary layers with the q-ζ turbulence model. Engineering Turbulence Modelling and Experiments, pages 141–150, 1996.

[13]

B.J. Daly and F.H. Harlow. Transport Equations in Turbulence. The Physics of Fluids, 13(11), 1970.

[14]

L. Davidson, P.V. Nielsen, and A. Sveningsson. Modifications of the v2-f Model for Computing the Flow in a 3d Wall Jet. Turbulence Heat and Mass Transfer 4, pages 577–584, 2003.

[15]

D.M. Driver and H.L. Seegmiller. Features of a reattaching turbulent shear layer in divergent channel flow. AIAA Journal, 23(2):163–171, 1985.

[16]

S.H. El Tahry. k-epsilon equation for compressible reciprocating engine flows. Journal of Energy, 7(4):345–353, 1983.

[17]

Stefan Emeis. Wind energy meteorology: atmospheric physics for wind power generation. Springer-Verlag Berlin Heidelberg, 2013.

[18]

E. Fares and W. Schroder. A differential equation for appropximate wall distance. International Journal for Numerical Methods in Fluids, 39:743–762, 2002.

[19]

J. Furst. Numerical simulation of transitional flows with laminar kinetic energy. Engineering Mechanics, 20(5):379–388, 2013.

[20]

M.M. Gibson and A.A. Dafa'Alla. Two-equation model for turbulent wall flow. AIAA Journal, 33(8):1514–1518, 1995.

[21]

M.M. Gibson and B. Launder. Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer. Journal of Fluid Mechanics, 86(3):491–511, 1978.

[22]

N. Gregory and C.L. O'Reilly. Low-speed aerodynamic characteristics of NACA 0012 aerofoil sections, including the effects of upper-surface roughness simulation hoar frost. Reports and Memoranda No. 3726, National Physics Laboratory, Teddington, UK, 1970.

[23]

M.S. Gritskevich, A.V. Garbaruk, J. Schütze, and F.R. Menter. Development of DDES and IDDES Formulations for the k-w Shear Stress Transport Model. Flow, Turbulence and Combustion, 88(3):431–449, 2012.

[24]

DM Hargreaves and Nigel G Wright. On the use of the k–ε model in commercial cfd software to model the neutral atmospheric boundary layer. Journal of wind engineering and industrial aerodynamics, 95(5):355–369, 2007.

[25]

Ami Harten. High Resolution Schemes for Hyperbolic Conservation Laws. Journal of computational physics, 49(3):357–393, 1983.

[26]

A. Hellsten. Some Improvements in Menter's k - w SST Turbulence Model. In 29th AIAA Fluid Dynamics Conference, volume AIAA-98-2554, Albuquerque, NM, June 1997.

[27]

R.I. Issa. Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1):40–65, 1986.

[28]

H. Jasak, H. G. Weller, and A.D. Gosman. High Resolution NVD Differencing Scheme for Arbitrarily Unstructured Meshes. International Journal for Numerical Methods in Fluids, 31:431–449, 1999.

[29]

W-W Kim and S. Menon. A new dynamic one-equation subgrid-scale model for large eddy simulations. In 33rd Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 1995.

[30]

Moin P. Kim, J. and R. Moser. Turbulence statistics in fully developed channel flow at low reynolds number. Journal of fluid mechanics, 177:133–166, 1987.

[31]

Yusik Kim, Ian P Castro, and Zheng-Tong Xie. Divergence-free turbulence inflow conditions for large-eddy simulations with incompressible flow solvers. Computers & Fluids, 84:56–68, 2013.

[32]

Markus Klein, Amsini Sadiki, and Johannes Janicka. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. Journal of computational Physics, 186(2):652–665, 2003.

[33]

Tobias Knopp, Thomas Alrutz, and Dieter Schwamborn. A grid and flow adaptive wall-function method for rans turbulence modelling. Journal of Computational Physics, 220(1):19–40, 2006.

[34]

Biedron R.T. Krist, S.L. and C.L. Rumsey. CFL3D User's Manual (version 5.0). Manual TM-1998-208444, NASA Langley Research Center; Hampton, VA, United States, 1997.

[35]

C.L. Ladson. Effects of independent variation of Mach and Reynolds numbers on the low-speed aerodynamic characteristics of the NACA 0012 airfoil section. NASA Technical Memorandum NASA-TM-4074, NASA Langley Research Center; Hampton, VA, United States, 1988.

[36]

J. Langner. Implementierung und validierung von rans-modellen der thermisch geschichteten, atmosphärischen grenzschicht. Master's thesis, Technische Universität Berlin, Berlin, 2016.

[37]

R.B. Langtry and F.R. Menter. Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA Journal, 47(12):2894–2906, 2009.

[38]

R.B. Langtry. A Correlation-Based Transition Model using Local Variables for Unstructured Parallelized CFD codes. PhD Thesis, Stuttgart, Germany, 2006.

[39]

B.E. Launder and D.B. Spalding. The numerical computation of turbulent flows. Computer methods in applied mechanics and engineering, 3(2):269–289, 1974.

[40]

B.E. Launder, G.J. Reece, and W. Rodi. Progress in the Development of a Reynolds-Stress Turbulence Closure. Journal of Fluid Mechanics, 68:537–566, 1975.

[41]

DR Laurence, JC Uribe, and SV Utyuzhnikov. A robust formulation of the v2-f model. Flow, Turbulence and Combustion, 73(3-4):169–185, 2005.

[42]

M. Lee and R.D. Moser. Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200. Journal of Fluid Mechanics, 774:395–415, 2015.

[43]

B.P. Leonard. A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer methods in applied mechanics and engineering, 19(1):59–98, 1979.

[44]

B.P. Leonard. Simple high-accuracy resolution program for convective modelling of discontinuities. International Journal for Numerical Methods in Fluids, 8(10), 1988.

[45]

F. S. Lien and G. Kalitzin. Computations of transonic flow with the v2-f turbulence model. International Journal of Heat and Fluid Flow, 22(1):53–61, 2001.

[46]

F. S. Lien and M. A. Leschziner. A Pressure-Velocity Solution Strategy for Compressible Flow and Its Application to Shock/Boundary-Layer Interaction Using Second-Moment Turbulence Closure. Journal of Fluids Engineering, 115(4):717–725, 1993.

[47]

F. S. Lien and M. A. Leschziner. Upstream monotonic interpolation for scalar transport with application to complex turbulent flows. International Journal for Numerical Methods in Fluids, 19(6):527–548, 1994.

[48]

F. S. Lien, W.L. Chen, and M. A. Leschziner. Low-Reynolds-Number Eddy-Viscosity Modelling Based on Non-Linear Stress-Strain/Vorticity Relations. Engineering Turbulence Modelling and Experiments 3, pages 91–100, 1996.

[49]

R. Martinuzzi and C. Tropea. The Flow Around Surface-Mounted, Prismatic Obstacles Placed in a Fully Developed Channel Flow. Journal of Fluids Engineering, 115(1):85–92, 1993.

[50]

W.J. McCroskey. A critical assessment of wind tunnel results for the NACA 0012 airfoil. NASA Technical Memorandum NASA-TM-100019, NASA Ames Research Center; Moffett Field, CA, United States, 1987.

[51]

F. Menter and T. Esch. Elements of Industrial Heat Transfer Predictions. Uberlandia, Brazil, 2001.

[52]

Florian Menter, J Carregal Ferreira, Thomas Esch, Brad Konno, and AC Germany. The sst turbulence model with improved wall treatment for heat transfer predictions in gas turbines. In Proceedings of the international gas turbine congress, pages 2–7, 2003.

[53]

F.R. Menter, M. Kuntz, and R. Langtry. Ten years of industrial experience with the SST turbulence model. In Proceedings of the fourth international symposium on turbulence, heat and mass transfer, pages 625–632, Antalya, Turkey, 2003. Begell House.

[54]

F.R. Menter, R. Langtry, and S. Volker. Transition Modelling for General Purpose CFD Codes. Flow, Turbulence and Combustion, 77(1):277–303, 2006.

[55]

R.D. Moser, J. Kim, and N.N. Mansour. Direct numerical simulation of turbulent channel flow up to f text Re_τ f =590. Physics of Fluids, 11(4):943–945, 1999.

[56]

NASA Langley Research Center. The Menter Shear Stress Transport Turbulence Model, 2015.

[57]

F. Nicoud and F. Ducros. Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor. Flow Turbulence and Combustion, 62(3):183–200, 1999.

[58]

AM Obukhov. Turbulence in an atmosphere with a non-uniform temperature. Boundary-layer meteorology, 2(1):7–29, 1971.

[59]

Alessandro Parente, Catherine Gorlé, J Van Beeck, and Carlo Benocci. Improved k–ε model and wall function formulation for the rans simulation of abl flows. Journal of wind engineering and industrial aerodynamics, 99(4):267–278, 2011.

[60]

R. Poletto, T. Craft, and A. Revell. A New Divergence Free Synthetic Eddy Method for the Reproduction of Inlet Flow Conditions for LES. Flow, Turbulence and Combustion, 91(3):519–539, 2013.

[61]

S. B. Pope. Turbulent flows. Cambridge Univ. Press, Cambridge, UK, 2000.

[62]

M Popovac and K Hanjalic. Compound wall treatment for rans computation of complex turbulent flows and heat transfer. Flow, turbulence and combustion, 78(2):177, 2007.

[63]

PJ Richards and RP Hoxey. Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model. In Computational Wind Engineering 1, pages 145–153. Elsevier, 1993.

[64]

Christopher L Rumsey and Philippe R Spalart. Turbulence model behavior in low reynolds number regions of aerodynamic flowfields. AIAA journal, 47(4):982–993, 2009.

[65]

T. Saad, D. Cline, R. Stoll, and J.C. Sutherland. Scalable tools for generating synthetic isotropic turbulence with arbitrary spectra. AIAA Journal, 55(1):327–331, 2017.

[66]

T.H. Shih, J. Zhu, and J. Lumley. A Realizable Reynolds Stress Algebraic Equation Model. NASA Technical Memorandum 105993, 1993.

[67]

T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, and J. Zhu. A new k-e eddy viscosity model for high:reynolds number turbulent flows. Computers and Fluids, 24(3):227–238, 1995.

[68]

J. Smagorinsky. General Circulation Experiments with the Primitive Equations I. the Basic Experiment*. Monthly Weather Review, 91(3):99–164, 1963.

[69]

Andrey Sogachev and Oleg Panferov. Modification of two-equation models to account for plant drag. Boundary-Layer Meteorology, 121(2):229–266, 2006.

[70]

Andrey Sogachev, Mark Kelly, and Monique Y Leclerc. Consistent two-equation closure modelling for atmospheric research: buoyancy and vegetation implementations. Boundary-layer meteorology, 145(2):307–327, 2012.

[71]

N N Sørensen, A Bechmann, J Johansen, L Myllerup, P Botha, S Vinther, and B S Nielsen. Identification of severe wind conditions using a reynolds averaged navier-stokes solver. Journal of Physics: Conference Series, 75:012053, jul 2007.

[72]

P.R. Spalart and S.R. Allmaras. A One-Equation Turbulence Model for Aerodynamic Flows. Recherche Aerospatiale, 1:5–21, 1994.

[73]

P.R. Spalart, W-H Jou, M. Strelets, and S.R. Allmaras. Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES. In Advances in DNS/LES, pages 137–147, Columbus, OH, USA, 1997. Greyden Press.

[74]

P.R. Spalart, S. Deck, M.L. Shur, K.D. Squires, M.K. Strelets, and A. Travin. A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities. Theoretical and Computational Fluid Dynamics, 20(3):181–195, 2006.

[75]

P. Spalart, M.L. Shur, M. Strelets, and A. Travin. Sensitivity of Landing-Gear Noise Predictions by Large-Eddy Simulation to Numerics and Resolution. In Aerospace Sciences Meetings, Nashville, Tennessee, 2012.

[76]

D.B. Spalding. A novel finite difference formulation for differential expressions involving both first and second derivatives. International Journal for Numerical Methods in Engineering, 4(4):551–559, 1972.

[77]

D.B. Spalding. Calculation of turbulent heat transfer in cluttered spaces. In Proceedings of the 10th International Heat Transfer Conference, Brighton, UK, 1994.

[78]

C.G. Speziale, S. Sarker, and T.B. Gatski. Modelling the pressure-strain correlation of turbulence. An invariant dynamical systems approach. Journal of Fluid Mechanics, 227:245–272, 1991.

[79]

M. Strelets. Detached eddy simulation of massively separated flows. In 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 2001.

[80]

Jonathon Sumner and Christian Masson. k- ε simulations of the neutral atmospheric boundary layer: analysis and correction of discretization errors on practical grids. International journal for numerical methods in fluids, 70(6):724–741, 2012.

[81]

The Langley Research Center Turbulence Modeling Resource. 2DN00: 2D NACA 0012 Airfoil Validation Case. https://turbmodels.larc.nasa.gov/naca0012_val.html, 2018. [Online; Accessed 3-January-2019].

[82]

The Langley Research Center Turbulence Modeling Resource. The Spalart-Allmaras Turbulence Model. https://turbmodels.larc.nasa.gov/spalart.html, 2018. [Online; Accessed 3-January-2019].

[83]

A. Travin, M. Shur, M. Strelets, and P.R. Spalart. Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows. In Advances in LES of Complex Flows, volume 65 of Fluid Mechanics and Its Applications, pages 239–254, Munich, Germany, 2000. Springer Netherlands.

[84]

C. Truesdell. The Kinematics of Vorticity. Dover Publications, Mineola, New York, 2018. [Original edition in 1954].

[85]

P.G. Tucker. Differential equation-based wall distance computation for DES and RANS. Journal of computational physics, 190(1):229–248, 2003.

[86]

M Paul van der Laan, Niels N Sørensen, Pierre-Elouan Réthoré, Jakob Mann, Mark C Kelly, and Niels Troldborg. The k-ε-fp model applied to double wind turbine wakes using different actuator disk force methods. Wind Energy, 18(12):2223–2240, 2015.

[87]

M Paul van der Laan, Niels N Sørensen, Pierre-Elouan Réthoré, Jakob Mann, Mark C Kelly, Niels Troldborg, Kurt S Hansen, and Juan P Murcia. The k-ϵ-fp model applied to wind farms. Wind Energy, 18(12):2065–2084, 2015.

[88]

H.A. van der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 13(2):631–644, 1992.

[89]

J.P. Van Doormaal and G.D. Raithby. Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows. Numerical Heat Transfer, 7(2), 1984.

[90]

E.R. Van Driest. On turbulent flow near a wall. Journal of the aeronautical sciences, 23(11):1007–1011, 1956.

[91]

B. van Leer. Towards the Ultimate Conservative Difference Scheme. II. Monotonicity and Conservation Combined in a Second-order Scheme. Journal of computational physics, 14(4):361–370, 1974.

[92]

K. Walters and D. Cokljat. A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow. 130(12), 2008.

[93]

R.F. Warming and M. Beam. Upwind Second-Order Difference Schemes and Applications in Aerodynamic Flows. AIAA Journal, 14(9):1241–1249, 1976.

[94]

N.D. Waters and M.J. King. Unsteady flow of an elastico-viscous liquid. Rheologica Acta, 9(3):345–355, 1970.

[95]

K. Wieghardt and W. Tillman. On the Turbulent Friction Layer for Rising Pressure. Technical Report NACA TM-1314, 1951.

[96]

Zheng-Tong Xie and Ian P Castro. Efficient generation of inflow conditions for large eddy simulation of street-scale flows. Flow, turbulence and combustion, 81(3):449–470, 2008.

[97]

V. Yakhot, S.A. Orszag, S. Thangam, and C.G. Speziale. Development of Turbulence Models for Shear Flows by a Double Expansion technique. Physics of Fluids A Fluid Dynamics, 4(7), 1992.

[98]

Y Yang, M Gu, and X Jin. New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the sst k-{$ backslashomega } $ model. In The Seventh Asia-Pasific Conference on Wind Engineering, Tapei, Taiwan, 2009.

[99]

Yi Yang, Ming Gu, Suqin Chen, and Xinyang Jin. New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 97(2):88–95, 2009.

[100]

A. Yoshizawa. Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Physics of Fluids, 29(7):2152–2164, 1986.