PBiCGStab.C
Go to the documentation of this file.
1 /*---------------------------------------------------------------------------*\
2  ========= |
3  \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4  \\ / O peration |
5  \\ / A nd | www.openfoam.com
6  \\/ M anipulation |
7 -------------------------------------------------------------------------------
8  Copyright (C) 2016-2017 OpenFOAM Foundation
9  Copyright (C) 2019-2021 OpenCFD Ltd.
10 -------------------------------------------------------------------------------
11 License
12  This file is part of OpenFOAM.
13 
14  OpenFOAM is free software: you can redistribute it and/or modify it
15  under the terms of the GNU General Public License as published by
16  the Free Software Foundation, either version 3 of the License, or
17  (at your option) any later version.
18 
19  OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
20  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
21  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
22  for more details.
23 
24  You should have received a copy of the GNU General Public License
25  along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
26 
27 \*---------------------------------------------------------------------------*/
28 
29 #include "PBiCGStab.H"
30 #include "PrecisionAdaptor.H"
31 
32 // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
33 
34 namespace Foam
35 {
36  defineTypeNameAndDebug(PBiCGStab, 0);
37 
38  lduMatrix::solver::addsymMatrixConstructorToTable<PBiCGStab>
40 
41  lduMatrix::solver::addasymMatrixConstructorToTable<PBiCGStab>
43 }
44 
45 
46 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
47 
48 Foam::PBiCGStab::PBiCGStab
49 (
50  const word& fieldName,
51  const lduMatrix& matrix,
52  const FieldField<Field, scalar>& interfaceBouCoeffs,
53  const FieldField<Field, scalar>& interfaceIntCoeffs,
54  const lduInterfaceFieldPtrsList& interfaces,
55  const dictionary& solverControls
56 )
57 :
59  (
60  fieldName,
61  matrix,
62  interfaceBouCoeffs,
63  interfaceIntCoeffs,
64  interfaces,
65  solverControls
66  )
67 {}
68 
69 
70 // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
71 
73 (
75  const solveScalarField& source,
76  const direction cmpt
77 ) const
78 {
79  // --- Setup class containing solver performance data
80  solverPerformance solverPerf
81  (
82  lduMatrix::preconditioner::getName(controlDict_) + typeName,
83  fieldName_
84  );
85 
86  const label nCells = psi.size();
87 
88  solveScalar* __restrict__ psiPtr = psi.begin();
89 
90  solveScalarField pA(nCells);
91  solveScalar* __restrict__ pAPtr = pA.begin();
92 
93  solveScalarField yA(nCells);
94  solveScalar* __restrict__ yAPtr = yA.begin();
95 
96  // --- Calculate A.psi
97  matrix_.Amul(yA, psi, interfaceBouCoeffs_, interfaces_, cmpt);
98 
99  // --- Calculate initial residual field
100  solveScalarField rA(source - yA);
101  solveScalar* __restrict__ rAPtr = rA.begin();
102 
103  matrix().setResidualField
104  (
106  fieldName_,
107  true
108  );
109 
110  // --- Calculate normalisation factor
111  const solveScalar normFactor = this->normFactor(psi, source, yA, pA);
112 
113  if ((log_ >= 2) || (lduMatrix::debug >= 2))
114  {
115  Info<< " Normalisation factor = " << normFactor << endl;
116  }
117 
118  // --- Calculate normalised residual norm
119  solverPerf.initialResidual() =
120  gSumMag(rA, matrix().mesh().comm())
121  /normFactor;
122  solverPerf.finalResidual() = solverPerf.initialResidual();
123 
124  // --- Check convergence, solve if not converged
125  if
126  (
127  minIter_ > 0
128  || !solverPerf.checkConvergence(tolerance_, relTol_, log_)
129  )
130  {
131  solveScalarField AyA(nCells);
132  solveScalar* __restrict__ AyAPtr = AyA.begin();
133 
134  solveScalarField sA(nCells);
135  solveScalar* __restrict__ sAPtr = sA.begin();
136 
137  solveScalarField zA(nCells);
138  solveScalar* __restrict__ zAPtr = zA.begin();
139 
140  solveScalarField tA(nCells);
141  solveScalar* __restrict__ tAPtr = tA.begin();
142 
143  // --- Store initial residual
144  const solveScalarField rA0(rA);
145 
146  // --- Initial values not used
147  solveScalar rA0rA = 0;
148  solveScalar alpha = 0;
149  solveScalar omega = 0;
150 
151  // --- Select and construct the preconditioner
154  (
155  *this,
156  controlDict_
157  );
158 
159  // --- Solver iteration
160  do
161  {
162  // --- Store previous rA0rA
163  const solveScalar rA0rAold = rA0rA;
164 
165  rA0rA = gSumProd(rA0, rA, matrix().mesh().comm());
166 
167  // --- Test for singularity
168  if (solverPerf.checkSingularity(mag(rA0rA)))
169  {
170  break;
171  }
172 
173  // --- Update pA
174  if (solverPerf.nIterations() == 0)
175  {
176  for (label cell=0; cell<nCells; cell++)
177  {
178  pAPtr[cell] = rAPtr[cell];
179  }
180  }
181  else
182  {
183  // --- Test for singularity
184  if (solverPerf.checkSingularity(mag(omega)))
185  {
186  break;
187  }
188 
189  const solveScalar beta = (rA0rA/rA0rAold)*(alpha/omega);
190 
191  for (label cell=0; cell<nCells; cell++)
192  {
193  pAPtr[cell] =
194  rAPtr[cell] + beta*(pAPtr[cell] - omega*AyAPtr[cell]);
195  }
196  }
197 
198  // --- Precondition pA
199  preconPtr->precondition(yA, pA, cmpt);
200 
201  // --- Calculate AyA
202  matrix_.Amul(AyA, yA, interfaceBouCoeffs_, interfaces_, cmpt);
203 
204  const solveScalar rA0AyA =
205  gSumProd(rA0, AyA, matrix().mesh().comm());
206 
207  alpha = rA0rA/rA0AyA;
208 
209  // --- Calculate sA
210  for (label cell=0; cell<nCells; cell++)
211  {
212  sAPtr[cell] = rAPtr[cell] - alpha*AyAPtr[cell];
213  }
214 
215  // --- Test sA for convergence
216  solverPerf.finalResidual() =
217  gSumMag(sA, matrix().mesh().comm())/normFactor;
218 
219  if
220  (
221  solverPerf.nIterations() >= minIter_
222  && solverPerf.checkConvergence(tolerance_, relTol_, log_)
223  )
224  {
225  for (label cell=0; cell<nCells; cell++)
226  {
227  psiPtr[cell] += alpha*yAPtr[cell];
228  }
229 
230  solverPerf.nIterations()++;
231 
232  return solverPerf;
233  }
234 
235  // --- Precondition sA
236  preconPtr->precondition(zA, sA, cmpt);
237 
238  // --- Calculate tA
239  matrix_.Amul(tA, zA, interfaceBouCoeffs_, interfaces_, cmpt);
240 
241  const solveScalar tAtA = gSumSqr(tA, matrix().mesh().comm());
242 
243  // --- Calculate omega from tA and sA
244  // (cheaper than using zA with preconditioned tA)
245  omega = gSumProd(tA, sA, matrix().mesh().comm())/tAtA;
246 
247  // --- Update solution and residual
248  for (label cell=0; cell<nCells; cell++)
249  {
250  psiPtr[cell] += alpha*yAPtr[cell] + omega*zAPtr[cell];
251  rAPtr[cell] = sAPtr[cell] - omega*tAPtr[cell];
252  }
253 
254  solverPerf.finalResidual() =
255  gSumMag(rA, matrix().mesh().comm())
256  /normFactor;
257  } while
258  (
259  (
260  ++solverPerf.nIterations() < maxIter_
261  && !solverPerf.checkConvergence(tolerance_, relTol_, log_)
262  )
263  || solverPerf.nIterations() < minIter_
264  );
265  }
266 
267  matrix().setResidualField
268  (
270  fieldName_,
271  false
272  );
273 
274  return solverPerf;
275 }
276 
277 
279 (
280  scalarField& psi_s,
281  const scalarField& source,
282  const direction cmpt
283 ) const
284 {
286  return scalarSolve
287  (
288  tpsi.ref(),
290  cmpt
291  );
292 }
293 
294 
295 // ************************************************************************* //
Foam::expressions::patchExpr::debug
int debug
Static debugging option.
Foam::gSumMag
typeOfMag< Type >::type gSumMag(const FieldField< Field, Type > &f)
Definition: FieldFieldFunctions.C:598
Foam::addPBiCGStabSymMatrixConstructorToTable_
lduMatrix::solver::addsymMatrixConstructorToTable< PBiCGStab > addPBiCGStabSymMatrixConstructorToTable_
Definition: PBiCGStab.C:39
Foam::word
A class for handling words, derived from Foam::string.
Definition: word.H:65
Foam::FieldField
A field of fields is a PtrList of fields with reference counting.
Definition: FieldField.H:53
Foam::SolverPerformance::nIterations
const labelType & nIterations() const noexcept
Return number of iterations.
Definition: SolverPerformance.H:196
Foam::constant::atomic::alpha
const dimensionedScalar alpha
Fine-structure constant: default SI units: [].
Definition: readThermalProperties.H:212
Foam::lduMatrix
lduMatrix is a general matrix class in which the coefficients are stored as three arrays,...
Definition: lduMatrix.H:83
PrecisionAdaptor.H
Foam::SolverPerformance::finalResidual
const Type & finalResidual() const noexcept
Return final residual.
Definition: SolverPerformance.H:183
Foam::lduMatrix::solver
Abstract base-class for lduMatrix solvers.
Definition: lduMatrix.H:98
Foam::endl
Ostream & endl(Ostream &os)
Add newline and flush stream.
Definition: Ostream.H:369
Foam::gSumSqr
outerProduct1< Type >::type gSumSqr(const UList< Type > &f, const label comm)
Definition: FieldFunctions.C:597
Foam::lduMatrix::setResidualField
void setResidualField(const scalarField &residual, const word &fieldName, const bool initial) const
Definition: lduMatrix.C:322
Foam::Field< solveScalar >
Foam::SolverPerformance::checkConvergence
bool checkConvergence(const Type &tolerance, const Type &relTolerance, const int logLevel=0)
Check, store and return convergence.
Definition: SolverPerformance.C:64
Foam::Info
messageStream Info
Information stream (stdout output on master, null elsewhere)
beta
dimensionedScalar beta("beta", dimless/dimTemperature, laminarTransport)
Foam::UPtrList< const lduInterfaceField >
Foam::gSumProd
scalarProduct< Type, Type >::type gSumProd(const UList< Type > &f1, const UList< Type > &f2, const label comm)
Definition: FieldFunctions.C:605
Foam::dictionary
A list of keyword definitions, which are a keyword followed by a number of values (eg,...
Definition: dictionary.H:123
mesh
dynamicFvMesh & mesh
Definition: createDynamicFvMesh.H:6
Foam
Namespace for OpenFOAM.
Definition: atmBoundaryLayer.C:33
Foam::New
tmp< DimensionedField< TypeR, GeoMesh > > New(const tmp< DimensionedField< TypeR, GeoMesh >> &tdf1, const word &name, const dimensionSet &dimensions)
Global function forwards to reuseTmpDimensionedField::New.
Definition: DimensionedFieldReuseFunctions.H:105
Foam::autoPtr
Pointer management similar to std::unique_ptr, with some additional methods and type checking.
Definition: HashPtrTable.H:53
Foam::PrecisionAdaptor
A non-const Field/List wrapper with possible data conversion.
Definition: PrecisionAdaptor.H:186
Foam::SolverPerformance::initialResidual
const Type & initialResidual() const noexcept
Return initial residual.
Definition: SolverPerformance.H:170
Foam::SolverPerformance::checkSingularity
bool checkSingularity(const Type &residual)
Singularity test.
Definition: SolverPerformance.C:36
Foam::mag
dimensioned< typename typeOfMag< Type >::type > mag(const dimensioned< Type > &dt)
Foam::ConstPrecisionAdaptor
A const Field/List wrapper with possible data conversion.
Definition: PrecisionAdaptor.H:57
Foam::PBiCGStab::scalarSolve
virtual solverPerformance scalarSolve(solveScalarField &psi, const solveScalarField &source, const direction cmpt=0) const
Solve the matrix with this solver.
Definition: PBiCGStab.C:73
Foam::addPBiCGStabAsymMatrixConstructorToTable_
lduMatrix::solver::addasymMatrixConstructorToTable< PBiCGStab > addPBiCGStabAsymMatrixConstructorToTable_
Definition: PBiCGStab.C:42
Foam::direction
uint8_t direction
Definition: direction.H:52
Foam::PBiCGStab::solve
virtual solverPerformance solve(scalarField &psi, const scalarField &source, const direction cmpt=0) const
Solve the matrix with this solver.
Definition: PBiCGStab.C:279
Foam::refPtr< Container< Type > >::ref
Container< Type > & ref() const
Definition: refPtrI.H:203
psi
const volScalarField & psi
Definition: createFieldRefs.H:1
Foam::SolverPerformance
SolverPerformance is the class returned by the LduMatrix solver containing performance statistics.
Definition: SolverPerformance.H:52
Foam::defineTypeNameAndDebug
defineTypeNameAndDebug(combustionModel, 0)
Foam::cell
A cell is defined as a list of faces with extra functionality.
Definition: cell.H:54
PBiCGStab.H