The open source CFD toolbox
v2-f

Note
Under construction - please check again later

# Model equations

Dissipation equation

$\Ddt{\rho \epsilon} = - \div \left(\rho \u \epsilon \right) + \div \left( \rho D_{\epsilon} \grad \epsilon \right) + C_{\epsilon1} \rho \frac{G}{T_s} - \frac{2}{3} C_{\epsilon 1} + C_{\epsilon 3} \rho \left(\div \u \right) \epsilon - C_{\epsilon 2} \frac{\rho}{T_s} \epsilon + S_\epsilon$

Turbulent kinetic energy equation

$\Ddt{\rho k} = \div \left(\rho D_k \grad k\right) + \rho G - \frac{2}{3}\rho \left(\div \u\right) k - \rho \epsilon + S_k$

Relaxation function equation

$- \div^2 f = - \frac{f}{L^2} - \frac{1}{L^2 k} \left(\alpha - C_2 G \right)$

Turbulence stress normal to streamlines equation

$\Ddt{\rho \nu^2} = \div \left( \rho D_k \grad \nu^2 \right) + \rho \min \left(k f, C_2 G - \alpha \right) - N \rho \frac{\epsilon}{k} \nu^2 + S_{\nu^2}$

Where

$\alpha = \frac{1}{T_s} \left(\left(C_1 - N\right) \nu^2 - \frac{2}{3} k \left(C_1 - 1\right) \right)$

# Usage

The model is specified using:

RAS
{
turbulence      on;
RASModel        v2f;
}


# Further information

Source code:

• Foam::RASModels::v2f

References:

• Base model: Lien and Kalitzin [45]
• Modifications: Davidson et al. [14]

 Would you like to suggest an improvement to this page? Create an issue