EEqn.H
Go to the documentation of this file.
1{
3
4 fvScalarMatrix EEqn
5 (
6 mvConvection->fvmDiv(phi, he)
7 + (
8 he.name() == "e"
9 ? fvc::div(phi, volScalarField("Ekp", 0.5*magSqr(U) + p/rho))
10 : fvc::div(phi, volScalarField("K", 0.5*magSqr(U)))
11 )
12 - fvm::laplacian(turbulence->alphaEff(), he)
13 ==
14 rho*(U&g)
15 + Qdot
16 + parcels.Sh(he)
17 + radiation->Sh(thermo, he)
18 + fvOptions(rho, he)
19 );
20
21 EEqn.relax();
22
23 fvOptions.constrain(EEqn);
24
25 EEqn.solve();
26
27 fvOptions.correct(he);
28
29 thermo.correct();
30 radiation->correct();
31
32 Info<< "T gas min/max = " << min(T).value() << ", "
33 << max(T).value() << endl;
34}
Y[inertIndex] max(0.0)
volScalarField & he
Definition: YEEqn.H:52
tmp< fv::convectionScheme< scalar > > mvConvection(fv::convectionScheme< scalar >::New(mesh, fields, phi, mesh.divScheme("div(phi,Yi_h)")))
const uniformDimensionedVectorField & g
fv::options & fvOptions
surfaceScalarField & phi
Basic thermodynamics type based on the use of fitting functions for cp, h, s obtained from the templa...
U
Definition: pEqn.H:72
volScalarField & p
const volScalarField & T
fvScalarMatrix EEqn(fvm::ddt(rho, he)+mvConvection->fvmDiv(phi, he)+fvc::ddt(rho, K)+fvc::div(phi, K)+(he.name()=="e" ? fvc::div(fvc::absolute(phi/fvc::interpolate(rho), U), p, "div(phiv,p)") :-dpdt) - fvm::laplacian(turbulence->alphaEff(), he)==Qdot+fvOptions(rho, he))
autoPtr< radiation::radiationModel > radiation(radiation::radiationModel::New(T))
compressible::turbulenceModel & turbulence
GeometricField< scalar, fvPatchField, volMesh > volScalarField
Definition: volFieldsFwd.H:82
scalar Qdot
Definition: solveChemistry.H:2