DPMDyMFoam.C
Go to the documentation of this file.
1/*---------------------------------------------------------------------------*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration |
5 \\ / A nd | www.openfoam.com
6 \\/ M anipulation |
7-------------------------------------------------------------------------------
8 Copyright (C) 2017 OpenFOAM Foundation
9 Copyright (C) 2020 OpenCFD Ltd.
10-------------------------------------------------------------------------------
11License
12 This file is part of OpenFOAM.
13
14 OpenFOAM is free software: you can redistribute it and/or modify it
15 under the terms of the GNU General Public License as published by
16 the Free Software Foundation, either version 3 of the License, or
17 (at your option) any later version.
18
19 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
20 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
21 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
22 for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
26
27Application
28 DPMDyMFoam
29
30Description
31 Transient solver for the coupled transport of a single kinematic particle
32 cloud including the effect of the volume fraction of particles on the
33 continuous phase, with optional mesh motion and mesh topology changes.
34
35\*---------------------------------------------------------------------------*/
36
37#include "fvCFD.H"
38#include "dynamicFvMesh.H"
41#include "pimpleControl.H"
42#include "CorrectPhi.H"
43
44#ifdef MPPIC
45 #include "basicKinematicCloud.H"
46 #define basicKinematicTypeCloud basicKinematicCloud
47#else
49 #define basicKinematicTypeCloud basicKinematicCollidingCloud
50#endif
51
52int main(int argc, char *argv[])
53{
54 argList::addNote
55 (
56 "Transient solver for the coupled transport of a"
57 " single kinematic particle cloud including the effect"
58 " of the volume fraction of particles on the continuous phase.\n"
59 "With optional mesh motion and mesh topology changes."
60 );
61 argList::addOption
62 (
63 "cloudName",
64 "name",
65 "specify alternative cloud name. default is 'kinematicCloud'"
66 );
67
68 #include "postProcess.H"
69
70 #include "setRootCaseLists.H"
71 #include "createTime.H"
72 #include "createDynamicFvMesh.H"
73 #include "createDyMControls.H"
74 #include "createFields.H"
75 #include "createUcf.H"
76 #include "initContinuityErrs.H"
77
78 Info<< "\nStarting time loop\n" << endl;
79
80 while (runTime.run())
81 {
82 #include "readDyMControls.H"
83 #include "CourantNo.H"
84 #include "setDeltaT.H"
85
86 ++runTime;
87
88 Info<< "Time = " << runTime.timeName() << nl << endl;
89
90 // Store the particle positions
91 kinematicCloud.storeGlobalPositions();
92
93 mesh.update();
94
95 // Calculate absolute flux from the mapped surface velocity
96 phic = mesh.Sf() & Ucf;
97
98 if (mesh.changing() && correctPhi)
99 {
100 #include "correctPhic.H"
101 }
102
103 // Make the flux relative to the mesh motion
104 fvc::makeRelative(phic, Uc);
105
106 if (mesh.changing() && checkMeshCourantNo)
107 {
108 #include "meshCourantNo.H"
109 }
110
111 continuousPhaseTransport.correct();
112 muc = rhoc*continuousPhaseTransport.nu();
113
114 kinematicCloud.evolve();
115
116 // Update continuous phase volume fraction field
117 alphac = max(1.0 - kinematicCloud.theta(), alphacMin);
118 alphac.correctBoundaryConditions();
119 alphacf = fvc::interpolate(alphac);
120 alphaPhic = alphacf*phic;
121
122 fvVectorMatrix cloudSU(kinematicCloud.SU(Uc));
123 volVectorField cloudVolSUSu
124 (
125 IOobject
126 (
127 "cloudVolSUSu",
128 runTime.timeName(),
129 mesh
130 ),
131 mesh,
132 dimensionedVector(cloudSU.dimensions()/dimVolume, Zero),
134 );
135
136 cloudVolSUSu.primitiveFieldRef() = -cloudSU.source()/mesh.V();
137 cloudVolSUSu.correctBoundaryConditions();
138 cloudSU.source() = Zero;
139
140 // --- Pressure-velocity PIMPLE corrector loop
141 while (pimple.loop())
142 {
143 #include "UcEqn.H"
144
145 // --- PISO loop
146 while (pimple.correct())
147 {
148 #include "pEqn.H"
149 }
150
151 if (pimple.turbCorr())
152 {
153 continuousPhaseTurbulence->correct();
154 }
155 }
156
157 runTime.write();
158
159 runTime.printExecutionTime(Info);
160 }
161
162 Info<< "End\n" << endl;
163
164 return 0;
165}
166
167
168// ************************************************************************* //
surfaceScalarField phic(mixture.cAlpha() *mag(alphaPhic/mesh.magSf()))
Y[inertIndex] max(0.0)
pimpleControl & pimple
dynamicFvMesh & mesh
engineTime & runTime
Creates and initialises the velocity velocity field Ucf.
Calculates and outputs the mean and maximum Courant Numbers.
GeometricField< vector, fvPatchField, volMesh > volVectorField
Definition: volFieldsFwd.H:83
messageStream Info
Information stream (stdout output on master, null elsewhere)
Ostream & endl(Ostream &os)
Add newline and flush stream.
Definition: Ostream.H:372
fvMatrix< vector > fvVectorMatrix
Definition: fvMatricesFwd.H:46
dimensioned< vector > dimensionedVector
Dimensioned vector obtained from generic dimensioned type.
constexpr char nl
The newline '\n' character (0x0a)
Definition: Ostream.H:53
Execute application functionObjects to post-process existing results.
checkMeshCourantNo
correctPhi
Info<< "Reading field U\n"<< endl;volVectorField Uc(IOobject(IOobject::groupName("U", continuousPhaseName), runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE), mesh);Info<< "Reading field p\n"<< endl;volScalarField p(IOobject("p", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE), mesh);Info<< "Reading/calculating continuous-phase face flux field phic\n"<< endl;surfaceScalarField phic(IOobject(IOobject::groupName("phi", continuousPhaseName), runTime.timeName(), mesh, IOobject::READ_IF_PRESENT, IOobject::AUTO_WRITE), linearInterpolate(Uc) &mesh.Sf());label pRefCell=0;scalar pRefValue=0.0;setRefCell(p, pimple.dict(), pRefCell, pRefValue);mesh.setFluxRequired(p.name());Info<< "Creating turbulence model\n"<< endl;singlePhaseTransportModel continuousPhaseTransport(Uc, phic);dimensionedScalar rhocValue(IOobject::groupName("rho", continuousPhaseName), dimDensity, continuousPhaseTransport);volScalarField rhoc(IOobject(rhocValue.name(), runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE), mesh, rhocValue);volScalarField muc(IOobject(IOobject::groupName("mu", continuousPhaseName), runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE), rhoc *continuousPhaseTransport.nu());Info<< "Creating field alphac\n"<< endl;volScalarField alphac(IOobject(IOobject::groupName("alpha", continuousPhaseName), runTime.timeName(), mesh, IOobject::READ_IF_PRESENT, IOobject::AUTO_WRITE), mesh, dimensionedScalar(dimless, Zero));const word kinematicCloudName(args.getOrDefault< word >("cloud", "kinematicCloud"));Info<< "Constructing kinematicCloud "<< kinematicCloudName<< endl;basicKinematicTypeCloud kinematicCloud(kinematicCloudName, rhoc, Uc, muc, g);scalar alphacMin(1.0 -(kinematicCloud.particleProperties().subDict("constantProperties") .get< scalar >("alphaMax")));alphac=max(1.0 - kinematicCloud.theta(), alphacMin);alphac.correctBoundaryConditions();surfaceScalarField alphacf("alphacf", fvc::interpolate(alphac));surfaceScalarField alphaPhic(IOobject::groupName("alphaPhi", continuousPhaseName), alphacf *phic);autoPtr< DPMIncompressibleTurbulenceModel< singlePhaseTransportModel > continuousPhaseTurbulence(DPMIncompressibleTurbulenceModel< singlePhaseTransportModel >::New(alphac, Uc, alphaPhic, phic, continuousPhaseTransport))
static const char *const typeName
The type name used in ensight case files.