DILUPreconditioner.C
Go to the documentation of this file.
1/*---------------------------------------------------------------------------*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration |
5 \\ / A nd | www.openfoam.com
6 \\/ M anipulation |
7-------------------------------------------------------------------------------
8 Copyright (C) 2011-2015 OpenFOAM Foundation
9 Copyright (C) 2019 OpenCFD Ltd.
10-------------------------------------------------------------------------------
11License
12 This file is part of OpenFOAM.
13
14 OpenFOAM is free software: you can redistribute it and/or modify it
15 under the terms of the GNU General Public License as published by
16 the Free Software Foundation, either version 3 of the License, or
17 (at your option) any later version.
18
19 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
20 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
21 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
22 for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
26
27\*---------------------------------------------------------------------------*/
28
29#include "DILUPreconditioner.H"
30#include <algorithm>
31
32// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
33
34namespace Foam
35{
37
38 lduMatrix::preconditioner::
39 addasymMatrixConstructorToTable<DILUPreconditioner>
41}
42
43
44// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
45
47(
48 const lduMatrix::solver& sol,
49 const dictionary&
50)
51:
52 lduMatrix::preconditioner(sol),
53 rD_(sol.matrix().diag().size())
54{
55 const scalarField& diag = sol.matrix().diag();
56 std::copy(diag.begin(), diag.end(), rD_.begin());
57
58 calcReciprocalD(rD_, sol.matrix());
59}
60
61
62// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
63
65(
67 const lduMatrix& matrix
68)
69{
70 solveScalar* __restrict__ rDPtr = rD.begin();
71
72 const label* const __restrict__ uPtr = matrix.lduAddr().upperAddr().begin();
73 const label* const __restrict__ lPtr = matrix.lduAddr().lowerAddr().begin();
74
75 const scalar* const __restrict__ upperPtr = matrix.upper().begin();
76 const scalar* const __restrict__ lowerPtr = matrix.lower().begin();
77
78 label nFaces = matrix.upper().size();
79 for (label face=0; face<nFaces; face++)
80 {
81 rDPtr[uPtr[face]] -= upperPtr[face]*lowerPtr[face]/rDPtr[lPtr[face]];
82 }
83
84
85 // Calculate the reciprocal of the preconditioned diagonal
86 const label nCells = rD.size();
87
88 for (label cell=0; cell<nCells; cell++)
89 {
90 rDPtr[cell] = 1.0/rDPtr[cell];
91 }
92}
93
94
96(
98 const solveScalarField& rA,
99 const direction
100) const
101{
102 solveScalar* __restrict__ wAPtr = wA.begin();
103 const solveScalar* __restrict__ rAPtr = rA.begin();
104 const solveScalar* __restrict__ rDPtr = rD_.begin();
105
106 const label* const __restrict__ uPtr =
107 solver_.matrix().lduAddr().upperAddr().begin();
108 const label* const __restrict__ lPtr =
109 solver_.matrix().lduAddr().lowerAddr().begin();
110 const label* const __restrict__ losortPtr =
111 solver_.matrix().lduAddr().losortAddr().begin();
112
113 const scalar* const __restrict__ upperPtr =
114 solver_.matrix().upper().begin();
115 const scalar* const __restrict__ lowerPtr =
116 solver_.matrix().lower().begin();
117
118 const label nCells = wA.size();
119 const label nFaces = solver_.matrix().upper().size();
120 const label nFacesM1 = nFaces - 1;
121
122 for (label cell=0; cell<nCells; cell++)
123 {
124 wAPtr[cell] = rDPtr[cell]*rAPtr[cell];
125 }
126
127 for (label face=0; face<nFaces; face++)
128 {
129 const label sface = losortPtr[face];
130 wAPtr[uPtr[sface]] -=
131 rDPtr[uPtr[sface]]*lowerPtr[sface]*wAPtr[lPtr[sface]];
132 }
133
134 for (label face=nFacesM1; face>=0; face--)
135 {
136 wAPtr[lPtr[face]] -=
137 rDPtr[lPtr[face]]*upperPtr[face]*wAPtr[uPtr[face]];
138 }
139}
140
141
143(
145 const solveScalarField& rT,
146 const direction
147) const
148{
149 solveScalar* __restrict__ wTPtr = wT.begin();
150 const solveScalar* __restrict__ rTPtr = rT.begin();
151 const solveScalar* __restrict__ rDPtr = rD_.begin();
152
153 const label* const __restrict__ uPtr =
154 solver_.matrix().lduAddr().upperAddr().begin();
155 const label* const __restrict__ lPtr =
156 solver_.matrix().lduAddr().lowerAddr().begin();
157 const label* const __restrict__ losortPtr =
158 solver_.matrix().lduAddr().losortAddr().begin();
159
160 const scalar* const __restrict__ upperPtr =
161 solver_.matrix().upper().begin();
162 const scalar* const __restrict__ lowerPtr =
163 solver_.matrix().lower().begin();
164
165 const label nCells = wT.size();
166 const label nFaces = solver_.matrix().upper().size();
167 const label nFacesM1 = nFaces - 1;
168
169 for (label cell=0; cell<nCells; cell++)
170 {
171 wTPtr[cell] = rDPtr[cell]*rTPtr[cell];
172 }
173
174 for (label face=0; face<nFaces; face++)
175 {
176 wTPtr[uPtr[face]] -=
177 rDPtr[uPtr[face]]*upperPtr[face]*wTPtr[lPtr[face]];
178 }
179
180
181 for (label face=nFacesM1; face>=0; face--)
182 {
183 const label sface = losortPtr[face];
184 wTPtr[lPtr[sface]] -=
185 rDPtr[lPtr[sface]]*lowerPtr[sface]*wTPtr[uPtr[sface]];
186 }
187}
188
189
190// ************************************************************************* //
Simplified diagonal-based incomplete LU preconditioner for asymmetric matrices. The reciprocal of the...
virtual void preconditionT(solveScalarField &wT, const solveScalarField &rT, const direction cmpt=0) const
Return wT the transpose-matrix preconditioned form of residual rT.
virtual void precondition(solveScalarField &wA, const solveScalarField &rA, const direction cmpt=0) const
Return wA the preconditioned form of residual rA.
static void calcReciprocalD(solveScalarField &, const lduMatrix &)
Calculate the reciprocal of the preconditioned diagonal.
iterator begin() noexcept
Return an iterator to begin traversing the UList.
Definition: UListI.H:329
void size(const label n)
Older name for setAddressableSize.
Definition: UList.H:114
A cell is defined as a list of faces with extra functionality.
Definition: cell.H:57
A list of keyword definitions, which are a keyword followed by a number of values (eg,...
Definition: dictionary.H:126
A face is a list of labels corresponding to mesh vertices.
Definition: face.H:75
virtual const labelUList & upperAddr() const =0
Return upper addressing.
virtual const labelUList & lowerAddr() const =0
Return lower addressing.
Abstract base-class for lduMatrix solvers.
Definition: lduMatrix.H:99
const lduMatrix & matrix() const noexcept
Definition: lduMatrix.H:233
lduMatrix is a general matrix class in which the coefficients are stored as three arrays,...
Definition: lduMatrix.H:84
scalarField & upper()
Definition: lduMatrix.C:203
const lduAddressing & lduAddr() const
Return the LDU addressing.
Definition: lduMatrix.H:578
scalarField & lower()
Definition: lduMatrix.C:174
scalarField & diag()
Definition: lduMatrix.C:192
#define defineTypeNameAndDebug(Type, DebugSwitch)
Define the typeName and debug information.
Definition: className.H:121
const labelList nFaces(UPstream::listGatherValues< label >(aMesh.nFaces()))
Namespace for OpenFOAM.
uint8_t direction
Definition: direction.H:56
lduMatrix::preconditioner::addasymMatrixConstructorToTable< DILUPreconditioner > addDILUPreconditionerAsymMatrixConstructorToTable_
void diag(pointPatchField< vector > &, const pointPatchField< tensor > &)