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Chapter 1

Introduction

The present User Manual serves as a guide for the setup and usage of the OpenFOAM ex-
ecutable adjointOptimisationFoam, included in OpenFOAM-v2312, for topology (TopO)
and shape (shpO) optimisation. Emphasis is given on the dictionaries and entries re-
quired to setup the continuous adjoint solvers and their utilities. The manual assumes
that the reader is familiar with the OpenFOAM environment. No theoretical back-
ground for the adjoint method is provided in this document, unless necessary for the
explanation of the code setup. The reader should refer to the relevant publications for
details on the adjoint method, [4, 10, 19]. A complete list of bibliographic references to
the developed adjoint methods can be found in the relevant publications listed here.

In the contents of this manual, the following conventions are used. Keywords men-
tioned in italics will refer to OpenFOAM dictionaries or dictionary entries. Blue color
will be used to identify dictionaries or entries that are optional. Red color will be used
to identify default values for variables, if they are not explicitly provided. Green color
will be used to indicate the path to certain tutorials. All tutorials pertaining to adjoin-
tOptimisationFoam can be found under

$FOAM_TUTORIALS/incompressible/adjointOptimisationFoam

Magenta color will be used to indicate that an option is run time modifiable.
Chapter 2 describes in detail the entries of optimisationDict, the basic dictionary

driving the adjoint code. Chapter 4 describes the entries to be added to fvSolution
while chapter 5 the ones to be added to fvSchemes. Chapter 6 describes entries related
to the adjoint to turbulence models, chapter 7 provides guidelines for defining the ad-
joint boundary conditions while chapter 8 explains the setup for deforming the mesh
during shape optimisation runs, including the setup of a volumetric B-splines mor-
pher. Chapter 9 describes the applications (solvers and utilities) used to solve the flow
(primal) and adjoint equations, compute the sensitivity derivatives and perform auto-
mated shape optimisation loops.

7
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Chapter 2

optimisationDict

optimisationDict is the main dictionary in which almost all information about the so-
lution of the primal and adjoint equations and the execution of the automated adjoint-
based optimisation loop (fig. 2.1) is set up. It is located in system and needs to be
present in practically all applications presented in section 9 to run. The various sub-
dictionaries and entries of optimisationDict are presented in detail in the sections that
follow.

2.1 optimisationManager

optimisationManager singleRun ;

The optimisationManager entry defines the mode of operation of the adjointOptimi-
sationFoam executable.

optimisationManager: (singleRun, steadyOptimisation)
singleRun is used to solve the primal and adjoint equations corresponding to each pri-
mal and adjoint solver just once, without performing an optimisation loop. steadyOp-
timisation is used when an automated optimisation loop is targeted. Further details
about the setup of the code in either scenario are given in sections 9.1.1.1 and 9.1.1.2.

2.2 primalSolvers

primalSolvers
{

p1

9
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Figure 2.1: The adjoint-based shape/topology optimisation loop executed by adjoin-
tOptimisationFoam when running in steadyOptimisation mode. When performing
shape optimisation, the design variables control the aerodynamic shape. In topology
optimisation, the design variables are the values of the porosity/impermeability field
at each cell, indicating the presence of void (fluid) or solid phase.

{
act ive true ;
type incompressible ;
solver simple ;
useSolverNameForFields f a l s e ;
solutionControls
{

n I t e r s 3000;
residualControl
{

"p . * " 1 . e −8;
"U. * " 1 . e −8;

}
averaging
{

average true ;
s t a r t I t e r 1000;
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}
}

}
}

The primalSolvers dictionary is where the solver(s) of the primal equations are de-
fined. One set of primal equations will be solved for each sub-dictionary within pri-
malSolvers. A situation in which more than one primal solvers must be used is when
tackling multi-point optimisation problems (e.g. minimizing airfoil drag in two differ-
ent farfield flow angles).

2.2.1 Entries within each primalSolver sub-dictionary

active: (true|false)
Whether the primal equations corresponding to this solver are going to be solved or
not.

type: (incompressible)
Type of the primal solver. Only one option valid for now.

solver: (simple, RASTurbulenceModel)
Solution algorithm used to solve the primal equations. simple will replicate the be-
haviour of simpleFoam while RASTurbulenceModel will solve the turbulence model
PDEs, as set-up in constant/turbulenceProperties, using constant U and phi fields.

useSolverNameForFields:(true|false)
If set to true, all flow variable names related to this solver will be appended with the
solver name (e.g. “U” would become “Up1”). If this is the case, the entries in fvSolu-
tion (solvers, relaxationFactors, etc) and fvSchemes (discretization schemes for grads,
divs, etc) have to appropriately be adapted manually (the use of wildcards can pro-
duce compact setups in these cases). As of v2312, this flag is set to true automatically
for multi-point runs and, for convenience sake, should better be kept to false for single-
point runs. If set to true, boundary conditions will be read in the following way:

• If a file exists with the specific field name (e.g. “Up1”), boundary conditions will
be read from there.

• If not, the code will attempt to read the base field file (e.g. “U”). If this fails, the
code will exit with an appropriate error message.

Note: Boundary conditions that require field names (e.g. inletOutlet requires the “phi”
name, which defaults to “phi”) should be set appropriately.
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2.2.1.1 solutionControls

solutionControls contains entries used to manage the solution process of the primal
equations. For the simple solver, among others, its entries include all entries that would
be read through system/fvSolution/SIMPLE if simpleFoam was used instead of adjoin-
tOptimisationFoam.
Note: if system/fvSolution/SIMPLE exists, it will take precedence over solutionControls
in optimisationDict; hence it is recommended to avoid its inclusion.

Additional entries include:

nIters
Maximum number of iterations for the numerical solution of the primal equations.

nInitialIters optional, default=nIters
The number of iterations for solving the primal equations in the first optimisation cy-
cle could potentially be higher than nIters. This is because the solution of the primal
PDEs at each new optimisation cycle uses the fields computed at the previous cycle
as initialisation. Thus, the primal equations at each optimisation cycle other than the
first one will likely require less iterations than the first cycle to converge.

2.2.1.1.1 averaging

averaging is optional. It controls averaging of the primal fields during the solution of
the primal equations. This is mainly used to feed the adjoint equations with averaged
primal fields in cases a limit-cycle oscillation manifests during the primal solution (e.g.
solving a, practically, unsteady flow using a steady-state solver like simpleFoam).

average (true, false)
Whether to perform averaging or not. If set to true, all primal fields related to the solver
will be averaged (e.g. U, p, phi, turbulence model variables, etc). Averaged field names
consist of the original field name, appended by ’Mean’.

startIter
Starting iteration of the averaging process.

shapeOptimisation/motorBike
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2.3 adjointManagers

adjointManagers
{

am1
{

primalSolver p1 ;
operatingPointWeight 1 ;
adjointSolvers
{

as1
{

/ / choose adjoint s o l v e r
/ / −−−−−−−−−−−−−−−−−−−−−−
act ive true ;
type incompressible ;
solver adjointSimple ;
useSolverNameForFields f a l s e ;
computeSensitivities true ;
isConstraint f a l s e ;
/ / manage o b j e c t i v e s
/ / −−−−−−−−−−−−−−−−−−
object ives
{

type incompressible ;
objectiveNames
{

losses
{

type PtLosses ;
weight 1 ;
patches ( I n l e t Outlet ) ;

}
}

}
/ / ATC treatment
/ / −−−−−−−−−−−−−−

ATCModel
{

ATCModel standard ;
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extraConvection 0 ;
zeroATCPatchTypes ( ) ;
nSmooth 0 ;
maskType face Ce l l s ;

}
/ / solution control
/ / −−−−−−−−−−−−−−−−−−
solutionControls
{

n I t e r s 3000;
printMaxMags true ;
residualControl
{

"pa . * " 1 . e −7;
"Ua. * " 1 . e −7;

}
averaging
{

average true ;
s t a r t I t e r 1000;

}
}

}
}

}
}

One adjointManager should be defined for each primal solver present in the primal-
Solvers dictionary (section 2.2). Each adjointManager is responsible for the adjoint
PDEs to be solved at the corresponding operating point.

2.3.1 Entries within each adjointManager sub-dictionary

primalSolver
The name of the primal solver dict (section 2.2) corresponding to the current operating
point.

operatingPointWeight 1;
When having multiple objective functions defined across many operating points, they
have to be concatenated into a single J using user-defined weights, i.e. J =∑

i w op
i J op

i ,

where J op
i is the objective of i -th operating point (see also section 2.3.1.1.1 and eq. 2.1)
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and w op
i the corresponding weight; operatingPointWeight corresponds to w op

i .

adjointSolvers
A list of dictionaries, setting up the adjoint solvers to be used in this operating point.
One set of adjoint PDEs will be solved for each adjoint solver and one correspond-
ing set of sensitivity derivatives will be computed. Use multiple adjointSolvers only if
sensitivities of multiple objectives must be computed separately from each other. If
the weighted sum of different objectives is of interest, a single adjointSolver should be
used and the weights of each objective should be defined in the objectives dictionary,
section 2.3.1.1.1.
Note: The names of the sub-dictionaries within adjointSolvers should be unique across
all operating points (i.e. across all adjointManagers).

2.3.1.1 Entries within each adjoinSolvers sub-dictionary

active: (true|false)
Whether the adjoint equations should be solved for this adjointSolver.

type: (incompressible null)
Type of the adjoint solver; incompressible corresponds to adjoint solvers related to in-
compressible flows whereas the null type should be used to compute sensitivity deriva-
tives for geometric objective functions (i.e. objective functions not including flow vari-
ables; see also section 2.3.1.1.1).

solver (adjointSimple)
Solution algorithm used to solve the adjoint equations. Only the adjointSimple option
is available for now.

useSolverNameForFields: (true|false)
The equivalent of the useSolverNameForFields in the primalSolver setup, section 2.2.1.
Is automatically set to true if more than one incompressible adjointSolvers are present
(i.e., wont be affected by the presence of null adjoint solvers)).

computeSensitivities: (true|false)
Whether to compute sensitivity derivatives or not, after solving the adjoint equations.

isConstraint: (true|false)
Whether the objective function of this adjoint solver will act as a constraint. See also
section 2.4.4 for the appropriate updateMethods to be used in the presence of con-
straints.
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isDoubleSidedConstraint: (true|false)
Whether the objective function of this adjoint solver will act as a double-sided inequal-
ity constraint of the form lt < J < ut , where lt is the lower constraint value provided by
the targetLeft entry in each objective dictionary of this adjoint solver and ut is the up-
per target value provided by target in the same dictionary. See also section 2.4.4 for the
appropriate updateMethods to be used in the presence of inequality constraints.

shapeOptimisation/naca0012/laminar/multipleConstraints

2.3.1.1.1 objectives

type: (incompressible geometric)
Type of objective functions to be constructed; incompressible pertains to objective
functions depending on (incompressible) flow fields whereas geometric ones rely only
on geometric quantities and are usually employed as constraints.

objectiveNames
A list of dictionaries corresponding to the objective functions to be minimised. Each
objective function value is written in a file located in the optimisation folder, under ob-
jective/TimeName/objectiveName+AdjointSolverName. One set of adjoint equations is
solved for each adjointSolver, minimizing the weighted sum of the objectives declared
in objectiveNames, i.e.

J op =∑
i

wi Ji (2.1)

where superscript op refers to the current operating point; one should make a distinc-
tion between wi , which weight the objective functions of the current operating point
and w op

j , which are used to concatenate various J op
j , given by eq. (2.1), into a single

objective function.
Note: The names in objectiveNames should be unique across all adjointManagers

points and adjointSolvers.

Entries in each dictionary under objectiveNames

The entries in each dictionary under objectiveNames depend on the objective type. The
two mandatory entries are

type (force, forceTarget, moment, PtLosses, nutSqr, flowRate, flowRatePartition, uni-
formityPatch, uniformityCellZone, powerDissipation, partialVolume, topOVolume, topOSolid-
Volume)
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The type of the objective to be minimized.

weight
Objective function weight (see also eq. (2.1). Since the software is developed to com-
pute the minimum of an objective function, in case the user wants to maximise it, a
negative weight should be used.

target
Each objective function F can also be used as a constraint. To do so, this entry is used
to assign a target value Ft ar to F , i.e. J = F −Ft ar . To use the defined objective as a
constraint, the isConstraint entry should also be set to true, section 2.3.1.1.

targetLeft
Should be prescribed if isDoubleSidedConstraint is set to true in the corresponding ad-
joint solver (see also section 2.3.1.1), and corresponds to lt in a constraint of the form
lt < J < ut . See also section 2.4.4 for the appropriate updateMethods to be used in the
presence of inequality constraints.

normalize: (true|false)
It specifies whether the value of J is normalised with a factor, which is equal to either
the J value at the first optimisation cycle or a value defined by the user through the
entry normFactor.

A typical setup and a short description for each of the available objectives follows

Objective function of type incompressible

force

J =
∫

SW
ρ(−τi j n j +pni )ri dS

1
2ρAU 2∞

(2.2)

where τi j are the components of the stress tensor, p is the pressure divided by the
constant density ρ and n the unit normal vector. Vector r defines the direction in which
the force vector should be projected (e.g. parallel to the farfield velocity to minimize
drag). In what follows, repeated indices imply summation. In addition, SW are the
wall patches on which force is defined, A is the frontal area and U∞ the farfield velocity
magnitude.

A typical force dictionary would read

drag
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{
weight 1 . ;
type force ;
patches ( " wall . * " wallGroup ) ; / / wild cards , group names , e t c
direction (0.99939 0.03489 0) ;
Aref 2 . ;
rhoInf 1 . 2 2 5 ;
UInf 1 . ;

}

Note: Recall that the code assumes objectives are going to be minimised. To maximise
a force, either provide the opposite force direction vector or use a negative weight.

sensitivityMaps/naca0012/laminar/drag

moment

J =
∫

SW
ρr M

i ei j k (x j −xC
j )(−τkl nl +pnk )dS

1
2ρAlU 2∞

(2.3)

where rM is the moment direction to be minimised, x the position vector of each bound-
ary face, xC the position vector of the rotation center, l the reference length and ei j k the
permutation symbol. The rest of the symbols coincide with those defined in force.

A typical moment dictionary would read

moment
{

weight 1 . ;
type moment;
patches ( " wall . * " wallGroup ) ;
direct ion (0 0 1) ;
rotationCenter (0 0 0) ;
Aref 1 . ;
lRef 1 . ;
rhoInf 1 . 2 2 5 ;
UInf 6 . ;

} ;

sensitivityMaps/naca0012/laminar/moment
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PtLosses

J =−
∫

SI ,O

(
p + 1

2
v2

k

)
vi ni dS (2.4)

where S I and SO are the inlet and outlet patches, respectively. The inlet and outlet
patches can be prescribed in the patches entry.

Note: In case the patches entry is missing, the code will attempt to identify the in-
let/outlet patches automatically, by checking the mass flow from each mesh patch.
This identification of the inlet and outlet patches happens before the flow equations
are solved, so the flow initialisation might affect it.

losses
{

weight 1 . ;
type PtLosses ;
patches ( I n l e t Outlet ) ;

} ;

sensitivityMaps/sbend/laminar

nutSqr

J =
∫
Ω′
ν2

t dΩ (2.5)

whereΩ′ is the part of the computational domain in which the objective is defined and
νt is the turbulent viscosity. The objective has been used in the past to qualitatively
quantify and minimize noise [11].

noise
{

weight 1 . ;
type nutSqr ;
zones ( zone1 zone2 . . . ) ;

} ;

zones are the cellZones definingΩ′.
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shapeOptimisation/sbend/turbulent/SA/opt/nutSqr

flowRate

J =
∫

SO

vi ni dS (2.6)

where SO are the patches used to define the objective function (usually one or more
outlets).

flowRate
{

weight −1; / / maximize
type flowRate ;
patches ( outlet1 ) ;

}

Note: You can use a negative weight if you want to maxinize your objective function.

shapeOptimisation/fork-uneven/flowRate

flowRatePartition

J = 1

2

L∑
l=1

(
tl −

∫
SOl

vi ni dS

mI

)2

mI =−
∫

SI

vi ni dS (2.7)

defines a metric that quantifies the distribution of the inlet flow rate (mI ) to specific
outlets (SOl ) with target percentages (tl , l ∈ [1,L], where L is the number of specified
outlet patches).

p a r t i t i o n
{

weight 1 ;
type flowRatePartit ion ;
inletPatches ( i n l e t ) ; / / used to compute m_I
outletPatches ( outlet1 outlet2 ) ;
/ / Optional entry . I f abscent , i n l e t flow rate w i l l
/ / be partit ioned equally between o u t l e t s
/ / t a r g e t F r a c t i o n s ( 0 . 5 0 . 5 ) ;

}
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shapeOptimisation/fork-uneven/flowRatePartition

uniformityPatch

J = 1

2

∫
S(vi − vi )2dS∫

S dS

vi =
∫

S vi dS∫
S dS

(2.8)

is a uniformity index to be minimized, quantifying the variance of the velocity vector
vi w.r.t. the spatially averaged velocity vi , over prescribed surfaces (patches) S.

uniformity
{

weight 1 ;
type uniformityPatch ;
patches ( outlet2 ) ;

}

Note: In case the patches entry is missing, the code will attempt to identify the outlet
patches automatically, by checking the volume flow-rate from each mesh patch. This
identification happens before the flow equations are solved, so the flow initialization
might affect it.

shapeOptimisation/fork-uneven/uniformityPatch

uniformityCellZone

J = 1

2

∫
Ω′(vi − vi )2dΩ∫ ′

ΩdΩ

vi =
∫ ′
Ω vi dΩ∫ ′
ΩdΩ

(2.9)

similar to uniformityPatch, but this time defined over parts of the interior of the com-
putational domain,Ω′, set through cellZones.

uniformity
{

weight 1 ;
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type uniformityCellZone ;
zones ( zone ) ;

}

shapeOptimisation/sbend/laminar/opt/unconstrained/uniformityCellZone

powerDissipation

J = 1

2

∫
Ω′

(ν+νt )

(
∂vi

∂x j
+ ∂v j

∂xi

)2

dΩ (2.10)

is the fluid power that is dissipated within part of the computation domain,Ω′, defined
through cellZones.

powerDissipation
{

weight 1 ;
type powerDissipation ;
zones ( zone ) ;

}

Note: In the absence of stresses on the "inlets" and "outlets" of the cellZones used to
define the objective function, the latter is equivalent to volume flow-rate weighted to-
tal pressue losses (see PtLosses), [9].

shapeOptimisation/sbend/turbulent/SA/opt/powerDissipation

Objective functions of type geometric

partialVolume

J = V −Vi ni t

Vi ni t
(2.11a)

V =−1

3

∫
SW

xk nk dS (2.11b)

where V is the volume enclosed by the patches defining SW and Vi ni t is the volume of
the initial geometry, defined in the same way.
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losses
{

weight 1 . ;
type partialVolume ;
patches ( pressure suction ) ;

} ;

shapeOptimisation/naca0012/lift/opt/constraintProjection

topOVolume

J =
(∫
Ω(1−β)dΩ∫

ΩdΩ
−πt ar

)
1

πt ar
(2.12)

quantifies the difference of the volume occupied by the fluid and a target value πt ar ,
normalised with the latter, in topology optimisation. This constraint is frequently used
in topology optimisation since it prevents the creation of islands of fluids inside the
solid domain and accelerates the convergence of the algorithm. Since this objective is
already divided by the target volume, there is no need to normalize it; πt ar is defined
through the percentage entry in the objective dictionary.

vol
{

weight 1 . ;
type topOVolume ;
percentage 0 . 4 6 2 ;

}

topologyOptimisation/monoFluidAero/laminar/1_Inlet_2_Outlet/porosityBased/
R_20x

topOSolidVolume

J =
(∫
ΩβdΩ∫
ΩdΩ

−πt ar

)
1

πt ar
(2.13)

Similar to topOVolume, but quantifies the (normalised) percentage of the computa-
tional domain occupied by solid, instead of the fluid.
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vol
{

weight 1 . ;
type topOSolidVolume ;
percentage 0 . 4 6 2 ;

}

2.3.1.1.2 ATCModel

The ATCModel dict provides the available options for the so-called Adjoint Transpose
Convection (ATC) term, existing in the adjoint momentum equations. The ATC is nu-
merically stiff and can often cause convergence difficulties for the adjoint equations.
The ATCModel dict provides some options to smooth it, in order to facilitate conver-
gence in complex cases. Its entries read:

ATCModel (standard, UaGradU, cancel)

Form of the ATC term. The standard option computes it as u j
∂v j

∂xi
, where v and u are the

primal and adjoint velocity vectors, respectively. It is formulated by differentiating the
non-conservative form of the convection term in the primal momentum equations.

The UaGradU option computes the ATC term as −v j
∂u j

∂xi
and is formulated by differen-

tiating the conservative form of the convection term in the primal momentum equa-
tions. The cancel option excludes the ATC term from the adjoint momentum equations
during the solution of the adjoint PDEs (at the same time, of course, with reduced ac-
curacy depending on the case). In order of decreasing robustness, the options can be
given as (cancel, standard, UaGradU).

extraConvection Defaults to 0.
In order to facilitate convergence, add and subtract the adjoint convection term as
many times as specified by this entry, using slightly different discretisation schemes
in order to add numerical dissipation.

zeroATCPatchTypes Defaults to an empty wordList.
A wordList. Zero the ATC term next to patches of the provided types. No zeroing will be
conducted if the wordList is empty.

zeroATCZones Defaults to an empty wordList.
A wordList. Similar to zeroATCPatchTypes but works on the provided cellZones.



2.4. OPTIMISATION 25

nSmooth Defaults to 0.
Propagate the smoothing of the ATC term, applied to the cells collected through ze-
roATCPatchTypes and zeroATCZones, by using a Laplacian-like filter nSmooth times.

maskType (faceCells, pointCells)
Determines the way of selecting cells next to the zeroATCPatchTypes for smoothing the
ATC term. If faceCells is used, every cell having a face in the zeroATCPatchTypes bound-
aries is chosen whereas if pointCells is used, every cell that has a point in the zeroATC-
PatchTypes will be picked.

sensitivityMaps/naca0012/turbulent/liftFullSetup

2.3.1.1.3 solutionControls

solutionControls has entries used to manage the solution process of the adjoint equa-
tions. Its entries are the same as the ones in the solutionControls dictionary of the
primalSolvers dict, section 2.2.1.1. Averaging can be applied to the adjoint fields, in a
similar manner used for the primal ones, section 2.2.1.1.1. In this case, the mean ad-
joint fields will be used to compute the sensitivity derivatives.

Additional entries read:

printMaxMags: (true|false)
Whether to print the maximum values of the adjoint fields to the log file (useful con-
vergence metrics).

2.4 optimisation

The optimisation dict should be present only when an automated optimisation loop
is to be executed or sensitivity derivatives should be computed. Its sub-dictionaries
follow:

2.4.1 convergence

An optional dictionary including convergence criteria for the optimisation loop. If the
dictionary is absent, the optimisation will run for as many cycles as defined in system/-
controlDict.endTime. Its entries read

convergence
{

designVariables 1.e-04;
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objective 1.e-04;
feasibilityThreshold 1.e-06;

}

designVariables
The maximum correction of the design variables, normalised with the current values
of the latter, must be lower than this threshold to consider the optimisation loop con-
verged.

objective
The ratio (J k+1 − J k )/J k should be smaller than this value to to consider the optimisa-
tion loop converged, where J is the objective function value and the exponent indicates
the optimisation cycle counter.

feasibilityThreshold 1.e-06
In optimisation runs including constraints, apart from satisfying either the designVari-
ables or the objective criteria described above, all constraints should additionally have
a value less than the feasibilityThreshold to consider the optimisation loop converged.

If both the designVariables and objective criteria are defined, satisfying one of them
is enough to terminate the optimisation loop.

shapeOptimisation/naca0012/laminar/multipleConstraints

2.4.2 designVariables

A dictionary defining the design variables of the optimisation problem, how to com-
pute sensitivity derivatives of the objective and constraint function w.r.t. them and the
magnitude of their initial (i.e. in the first optimisation cycle) update.

designVariables
{

type shape ;
shapeType volumetricBSplines ;
sensi t iv i tyType shapeFI ;
patches ( motorBikeGroup ) ;
maxInitChange 2 . e −3;
lowerBound 0.1;
upperBound 1.1;
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}

type (topO, dynamicTopO, levelSet, shape)
The type of the chosen design variables. Types topO, dynamicTopO and levelSet are
all used to perform topology optimisation and are discussed in more detail in section
2.4.2.1. The shape option corresponds to shape optimisation which has its own sub-
options, described in section 2.4.2.2.

sensitivityType (topO, surfacePoints, surface, shapeESI, shapeFI, multiple)
The type of sensitivity derivatives to be computed. For all design variables options
related to topology optimisation (see type above), the entry sensitivityType topO; suf-
fices. Entries shapeESI, shapeFI are used for shape optimisation while entries surface-
Points, surface are used to compute sensitivity maps and are further discussed in sec-
tion 2.4.2.2.

maxInitChange
This entry is used to define the max. change of the design variables during the first
optimisation cycle. By defining this quantity, the eta entry in updateMethod (section
2.4.4) is defined implicitly and can thus be excluded from that dictionary. In any case,
either designVariables/maxInitChange or updateMethod/eta has to be present in order
to the define the step of the update.

lowerBound(s) and upperBound(s)
lowerBounds and upperBounds are optional lists corresponding to the user-defined
lower and upper values of each design variable. These entries can be used in both
shape and topology optimisation, as long as the updateMethod used supports bound
constraints (see section 2.4.4). In some cases, it is more convenient to specify a com-
mon value for the lower and upper bounds of all design variables, through the lower-
Bound and upperBound enties. For the topO and dynamicTopO design variables, lower
and upper bounds of 0 and 1, respectively, are applied automatically.

2.4.2.1 Topology optimisation-related design variables

A short introduction to topology optimisation is given in appendix A. The reader is
advised to go through this material before continuing in this section.

type topO;

topologyOptimisation/monoFluidAero/laminar/1_Inlet_2_Outlet/porosityBased/
R_20x
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These design variables correspond to porosity-based topology optimisation. In this
case, the porosity value (stored in field alpha) of each cell which does not belong to
fixedZeroPorousZones and fixedPorousZones (see below) is updated in each optimisa-
tion cycle.

designVariables
{

type topO ;
sensi t iv i tyType topO ;
fixedZeroPorousZones (fixedZeroZones);
fixedPorousZones (fixedZones);
fixedPorousValues (1);
activePorousZone (activeZones);
writeAllFields false;
r e g u l a r i s a t i o n
{

regularise false;
growFromWalls false;
meanRadiusMult 10;

/ / radius 0 . 1 ;
iters 500;
tolerance 1.e-06;
wallValue 1;
project false;
function tanh ;
b 40;

}
betaMax 2500;
maxInitChange 0 . 2 ;

}

fixedZeroPorousZones, fixedPorousZones, activePorousZones
These cellZone lists are used to tackle a few common scenarios in topology optimisa-
tion. Cells in fixedZeroPorousZones have a constant zero porosity value throughout the
optimisation. Cells in fixedPorousZones have a constant porosity value given by the
corresponding entry in fixedPorousValues; if fixedPorousValues is not provided, it is as-
sumed that all its entries are equal to 1. Cells in activePorousZones have their porosity
value updated during the optimisation. In case activePorousZones is empty or missing,
all cells not belonging to the cellZones of fixedZeroPorousZones and fixedPorousZones
are updated.
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writeAllFields (true|false);
If set to true, the field of design variables alpha and the sensitivity derivatives of the
objective and constraint functions defined in all adjoint solvers (named topOSens +
adjointSolverName, where ’adjointSolverName’ is the name of the dictionary defining
the adjoint solver, see section 2.3.1) are written to files, according to the writeInterval
in system/controlDict.

regularisation A common practice in topology optimisation is to employ some kind
of regularisation to the design variables field, before using it to compute the porosity-
dependent terms in the flow equations. Here, a Helmholtz-like filter is used, initially
introduced in [5], which reads

−
(

R

2
p

3

)2 ∂2α̃

∂x2
j

+ α̃=α (A.4)

where α̃ is the regularised porosity field and R can be seen as a smoothing radius, usu-
ally computed as a function of the average grid cell size (see meanRadiusMult below).
Regularisation, as any other smoothing technique, unavoidably blurs the line between
the fluid and solidified domains. To increase the contrast of the α̃ field, a projection
step, computing β based on α̃ [5]

β= t anh
(
ηb

)+ t anh
[
b

(
α̃−η)]

t anh
(
ηb

)+ t anh
[
b

(
1−η)] (A.5)

(withη= 0.5 and b being a sharpening parameter) should be additionally implemented.
If no regularisation/projection is applied, β=α. For more details, see also appendix A.

regularise (true|false);
This entry specifies whether regularisation is performed or not.

growFromWalls (true|false);
If set to true, a fixedValue boundary condition is applied on the wall boundaries when
solving eq. A.4; a zeroGradient one is imposed otherwise.

wallValue 1;
If growFromWalls has been set to true, wallValue defines the Dirichlet boundary con-
dition for α̃, which defaults to 1. If a large regularisation radius is used, this wall value
will be propagated to a significant part of the computational domain, blocking it off
even in cases with zero values for all design variables. This could happen, for instance,
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meanRadiusMultiplier (10)
By default, the smoothing radius R in eq. (A.4) is computed as a multiple of the average

cell size, given by
(
V

)1/d
, where V is the average cell volume, and d = 2,3 in 2D and

3D cases, respectively. This multiple is given by meanRadiusMultiplier which defaults
to 10. Alternatively, the radius can be provided directly by the radius entry (value in
meters).

iters 500;
Max. number of iterations when solving eq. (A.4).

tolerance 1.e-06;
Residual threshold when solving eq. (A.4). In case the solver reaches the max. number
of iterations before reaching this threshold, the solution of eq. (A.4) is terminated.

project (true|false, defaults to the value of regularise);
This entry specifies whether the projection step of eq. (A.5) is performed or not.

function
This entry corresponds to the projection function. It is usually chosen to be tanh. i.e.
eq. (A.5).

b
The parameter that controls the steepness of the projection function; the user can de-
fine the type of control over b through a sub-dictionary named b, located in regulari-
sation. As a rule of the thumb, b should follow the trend of R, i.e. larger R values call for
larger b values.

Available types are

type: (constant|scale)
When constant is chosen, then the value of b is simply defined as follows

b 7 ;

scale is chosen, when the value of b may change between successive optimisation
cycles. This is possible by using any of the available Function1 objects; a typical set-up
follows

b
{

type scale ;
scale
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{
type stepRamp;
start 0;
duration 100;
interval 10;

}
value
{

type constant;
value constant 100;

}
}

In the above sub-dictionary, type expects the name of the function which updates the
values of b throughout the optimisation cycles. stepRamp is a stepped ramp func-
tion which updates b every interval optimisation cycles until it reaches the value of
1. Updating b starts from the cycle defined with start and goes on for as many op-
timisation cycles as defined by the duration entry; when b reaches the value of 1, it
does not change thereafter. In the sub-dictionary above, the value of this function is
multiplied by a value produced by another Function1 object, which is defined in the
sub-dictionary value. The user can choose any other Function1 object, implemented
in $FOAM_SRC/OpenFOAM/primitives/functions/Function1.

betaMax
The value of β is multiplied by βmax before being used as a source term in the flow
equations. The value of βmax should be high enough to block the flow in the solidified
part of the computational domain. However, using an excessively high value usually
makes the optimisation numerically unstable. This value can either be given directly
through the betaMax entry (corresponding to betaMaxType value; which is the default
one) or can be computed based on the following approaches:

designVariables
{

betaMaxType (value|Darcy|ReynoldsDarcy);
betaMax 2500;

}

When the Darcy option is used, βmax is computed based on the Darcy number which

expresses the ratio between viscous and porous forces and is computed as Da = ν

L2βmax
.

In such a case, the following entries should additionally be defined
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betaMaxType Darcy;
DarcyCoeffs
{

Da 1.e-5;
inletPatches (inlet1 inlet2 ...);

/ / length 1 ;
}

The characteristic length L can either be explicitly provided or can be computed using
the hydraulic diameter computed based on the inletPatches. The Darcy number can
be given through the Da entry and defaults to 10−5.

topologyOptimisation/monoFluidAero/laminar/3DBox/losses

Alternatively, βmax can be computed based on the product of the Reynolds and
Darcy numbers, expressing the ratio between momentum and porous forces and com-

puted as ReDa = U

Lβmax
. In such a case, the following entries should additionally be

defined

betaMaxType ReynoldsDarcy;
ReynoldsDarcyCoeffs
{

ReDa 1.e-5;
inletPatches (inlet1 inlet2 ...);

/ / length 1 ;
Uref 10;

}

where the characteristic length quantities are defined in the same way as in the Darcy
option and a reference velocity, Uref, should be provided too.

type dynamicTopO;

In contrast to topO, the porosity field is not updated simultaneously at all cells, but only
in the “active” ones. Initially, a set of “active” cells has to be selected. To do so, the user
can define the patches (seedPatches), or the faceZones (seedFaceZones), to which the
“active” cells are attached. The user might also provide directly the cellZones (seedCel-
lZones) which include the initial “active” cells. In each subsequent optimisation cycle,
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the set of “active” cells is enriched with cells neighboring to the current ones, before
updating the porosity field.

To facilitate this functionality, the marchingCoeffs sub-dictionary should be present
inside designVariables:

type (dynamicTopO);
marchingCoeffs
{

seedPatches (designWall);
seedCellZones (dynamicCellZone);
seedFaceZones (dynamicFaceZone);
marchingStep 2;

}

By choosing marchingStep to be equal to 1, the list of the “active” cells is enriched by
the direct neighbors of the current “active cells” at a subsequent optimisation cycle; a
value of 2 indicates that second neighbors are also considered etc.

The rest of the entries mentioned in the type topO; section are used here too.

type levelSet;

designVariables
{

type l e v e l S e t ;
sensi t iv i tyType topO ;
fixedZeroPorousZones ( fixedZones ) ;
r e g u l a r i s a t i o n
{

r e g u l a r i s e true ;
meanRadiusMult 10;
/ / radius 0 . 0 5 ;

}
interpolat ion
{

function sigmoidalHeaviside ;
meanRadiusMult 1 ;
/ / d 0 . 0 1 ;

}
i n i t i a l i s a t i o n
{
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method meshWave ;
}
betaMax 2500;
maxInitChange 0 . 2 ;

}

The rational of the levelSet approach for topology optimisation is similar to that em-
ployed when using the topO design variables, in the sense of computing and applying
a source term that blocks-off counter-productive areas of the computational domain,
but differs in the approach used to compute them. Here, the design variables consist of
a signed field of the size of the mesh cells (called alpha). This field is then regularised
using eq. (A.4), to compute the alphaTilda field. Then, signed distances are computed
for each cell, using the zero iso-surface of the alphaTilda field as the seed and main-
taining its sign; this result is stored in the signedDistances field. Finally, the indicator
field, β, is computed a smooth Heaviside function.

Entries fixedZeroPorousZones, fixedPorousZones, fixedPorousValues, activePorous-
Zones, betaMax as well as the regularisation dictionary perform the same way as in type
topO; design variables. A couple of points of interest are that growFromWalls and pro-
jection should be set to false in the regularisation dictionary. Transition from the signed
distance field to the indicator field β is performed through the following dictionary

interpolat ion
{

function sigmoidalHeaviside ;
meanRadiusMult 1 ;
/ / d 0 . 0 1 ;

/ / function smoothHeaviside ;
/ / b 2 ;

}

where function can be either sigmoidalHeaviside or smoothHeaviside. In the former, a
near-band distance from the zero level-set surface is defined either through d (in [m])
or meanRadiusMultiplier (as a multiplier of the mean cell size), in which β smoothly
transitions from zero to one (corresponding to the fluid and solid domains, respec-
tively). In the latter, a sharpness parameter b is defined, where larger values lead to
narrower transition areas. The mathematical formulas for the two interpolation func-
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tions are

βsi g moi d = 0.5

(
1+ ∆

dN B
+ si n

(
π∆

dN B

)
1

π

)
βsmooth = 0.5(1+ t anh(b∆))

where ∆ is the signed distance field, dN B the narrow-band distance and b a sharpness
parameter.

topologyOptimisation/monoFluidAero/laminar/1_Inlet_2_Outlet/levelSet/
R_10x_NB_01x

The levelSet design variables are in a development stage and could be adjusted
soon.

2.4.2.2 Shape optimisation-related design variables

designVariables
{

type shape ;
shapeType volumetricBSplines ;
sensi t iv i tyType shapeFI ;
patches ( lower upper ) ;
maxInitChange 2 . e −3;

}

shapeType (Bezier, volumetricBSplines)
The available parameterisations for shape optimisation. When using the control points
of Bezier curves as the design variables, an additional dictionary is required, placed as
a direct subDict of the optimisationDict, defining the number of control points and
which of these have a confined movement in each direction.

Bezier
{

nBezier 16;
confineXmovement
(

true f a l s e f a l s e f a l s e f a l s e f a l s e f a l s e true
true f a l s e f a l s e f a l s e f a l s e f a l s e f a l s e true

) ;
confineYmovement
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(
true f a l s e f a l s e f a l s e f a l s e f a l s e f a l s e true
true f a l s e f a l s e f a l s e f a l s e f a l s e f a l s e true

) ;
confineZmovement
(

true true true true true true true true
true true true true true true true true

) ;
}

shapeOptimisation/sbend/laminar/primalAdjoint

When using the control points of volumetricBSplines morphing boxes as the de-
sign variables, the latter are defined through dynamicMeshDict, as outlined in detail in
section 8.1.

shapeOptimisation/sbend/laminar/opt/unconstrained/losses/BFGS

patches
a list of patches to be updated/morphed during shape optimisation.

2.4.3 sensitityType

designVariables
{

. . . .
sensi t iv i tyType surfacePoints ;
patches ( pressure suction ) ;
options . . .

}

The sensitivityType entry is where the setup for the computation of sensitivity deriva-
tives is provided. Sensitivities will be computed at the end of each adjoint solver, for
the adjoint solvers for which computeSensitivities is set to true, section 2.3.1.1. The
available options are
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sensitivityType (topO, surface, surfacePoints, shapeESI, shapeFI, multiple)

and a description for each of them follows. Options surface and surfacePoints are
used to compute sensitivity maps and cannot be used throughout an optimisation
loop.

2.4.3.1 topO

The sensitivity type associated with all variants of design variables related to topology
optimisation. No additional options can be applied here.

2.4.3.2 surface

This is used to compute the so-called sensitivity maps, i.e. the derivative of the objec-
tive function w.r.t. the normal displacement of the boundary wall faces. Upon com-
putation, a volScalarField named faceSensNormal, appended with the name of the ad-
jointSolver, will be written at the current time-step folder for each adjointSolver de-
clared, section 2.3.1. Keeping in mind the convention for the surface normal unit vec-
tor, facing from the fluid to the solid boundaries, positive sensitivities indicate a move-
ment opposite to the geometry normal (“outwards” or “inwards”, for external or inter-
nal aerodynamics, respectively); negative sensitivities indicate a movement aligned to
the geometry normal (“inwards” or “outwards”, for external or internal aerodynamics,
respectively) to minimize the given objective function, fig. 2.2

Figure 2.2: Drag sensitivity map computed on the surface of the DrivAer car model.
Blue areas should be moved according to the surface normal (“inwards”) to reduce
drag while red areas should be moved in the opposite direction.

A typical setup reads

sensi t iv i tyType surface ;
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patches ( " wall . * " ) ;
includeSurfaceArea true ;
includeMeshMovement true ;
adjointMeshMovementSolver
{

i t e r s 300;
tolerance 1 . e −7;

}
/ / E n tr i e s r e l a t e d to s e n s i t i v i t y smoothing
smoothSensit ivit ies true ;
meanRadiusMultiplier 10;
/ / radius 1 ;

includeSurfaceArea (true|false)
Whether to include the local face area in the sensitivity values or not. Should be set to
true if the actual impact of a face movement is required and the mesh resolution im-
pact should be taken into consideration (i.e. a unit movement of a face with a large area
will cause a relatively big shape change and, hence, will have a large sensitivity value).
On the contrary, if a normalized sensitivity distribution is required to get an overview
of the surface areas with high optimisation potential, this option should be set to false.
In this case, the sensitivity value should be interpreted as “what will be the change in
the objective, if a node is moved in such a way that the change in the local face area is
unitary”.

includeMeshMovement (true|false)
Whether to take into consideration the sensitivity contribution arising by the adjoint
to the grid displacement scheme or not. If set to false, the so-called Surface Integrals
(SI) formulation will be used, whereas if set to true, the so-called Enhanced Surface
Integrals (E-SI) approach will be employed, [4]. The latter assumes that, after updating
the geometry, the grid will be displaced using a set of Laplace-based PDEs and solves
the adjoint to that problem. In order to do so, boundary conditions for the adjoint
to the grid displacement variable (a volVectorField named ma) should be set. These
should be of zero fixedValue type for all boundaries, expect the constrained (i.e. cyclic,
processor, symmetry, etc) ones. The ma field is generated automatically by the code,
unless read from the current time-step folder. In addition, a solver for ma should be
added to fvSolution and a discretisation scheme for laplacian(ma) should be added in
fvSchemes/laplacianSchemes, unless a default one is present. No relaxation is required
for the solution of this equation. It is highly recommended to switch the includeMesh-
Movement to true in order to increase the accuracy of the computed sensitivities.

An additional, optional dictionary named adjointMeshMovementSolver can be pro-
vided to control the convergence of the adjoint grid displacement PDEs. If not pro-
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vided, the following default values will be used. Its entries read

adjointMeshMovementSolver

iters 1000
Maximum number of iterations for the adjoint grid displacement solver.

tolerance 1.e-06
Residual to be reached before considering the adjoint grid displacement PDEs as
converged.

For cases in which the Spalart–Allmaras turbulence model is differentiated (section
6), additional entries may be supplied under the designVariables dict. These read

includeDistance (true|false)
Whether to solve the adjoint to the eikonal equation or not, [10]; only for cases in-
cluding the adjoint to the Spalart–Allmaras turbulence model, section 6. If set to true,
boundary conditions for the adjoint distance field (a volScalarField named da) should
be set. These should be of zero fixedValue type for inlet and outlet boundaries and ze-
roGradient ones for walls. The da field is generated automatically by the code, unless
read from the current time-step folder. In addition, a solver for da should be added to
fvSolution, along with a relaxation factor for the da equation. A discretisation scheme
for div(-yPhi,da) should be added in fvSchemes/divSchemes. If includeDistance is set to
true, an additional optional dictionary named adjointEikonalSolver can be provided to
control the convergence of the adjoint eikonal PDE. A typical example reads

includeDistance true ;
adjointEikonalSolver
{

i t e r s 300;
tolerance 1 . e −7;
epsilon 0 . 1 ;

}

The iters and tolerance entries are identical to the ones in adjointMeshMovement-
Solver, section 2.4.3.2. The epsilon entry (default value to the equivalent one in fvSchemes
.wallDict.advectionDiffusionCoeffs if present, or set to 0.1 otherwise). For cases where
stability issues emerge, a higher value can be used.

Note: it is important NOT to use bounded divergence schemes for the convection term
of the adjoint eikonal equation, since yPhi is not conservative.
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shapeOptimisation/sensitivityMaps/naca0012/turbulent/liftFullSetup

smoothSensitivities (true|false)
Whether to smooth the computed sensitivity map. When computing sensitivity maps
on surface meshes generated from industrial geometries, the outcome might appear
noisy, especially if a volume-to-surface approach is used for meshing, e.g. as used by
snappyHexMesh. Even though the sensitivity map is technically correct, the noisy pat-
terns that appear might make the extraction of useful information challenging. Smooth-
ing can be used to facilitate the interpretation of the sensitivity map in such cases. The
sensitivity map is smoothed through a Laplace-Beltrami filter of the form

−R2∂
2m̃

∂x2
j

+m̃ = m (2.14)

where m is the original sensitity map, m̃ the smoothed one and R the smoothing ra-
dius. Eq. 2.14 is solved on the part of the surface mesh defined by the patches on
which the sensitivity map is computed, using the finiteArea infrastructure. If a finite
area mesh is provided under constant, it will be used; otherwise it is created on-the-fly
based on either an faMeshDefinition dictionary in the system directory, or constructed
internally based on the sensitivity patches. An indicative example is given in fig. 2.3.

meanRadiusMultiplier (10)
By default, the smoothing radius R in eq. (2.14) is computed as a multiple of the average
size of the boundary mesh elements; this multiple is given by meanRadiusMultiplier
which defaults to 10. Alternatively, the radius can be provided directly by the radius
entry (value in meters).
Note: From an optimisation point of view, the smoothing of eq. (2.14) can alternatively
be seen as computing the sensitivity derivatives δJ/δbi of the objective function J w.r.t.
a different set of design variables bi , i ∈ [1, N ], defined as

xi = xi ni t
i + b̃i

b̃i −R2∂
2b̃i

∂x2
j

= bi

where xi are the coordinates of the updated geometry, xi ni t
i the ones of the initial ge-

ometry and b̃i a smooth displacement field. In other words, no loss of accuracy is
incurred by the smoothing; instead, sensitivities are computed w.r.t. a different set of
design variables.
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sensitivityMaps/motorBike

Figure 2.3: Drag sensitivity map computed on the surface of the motorbike (tutorial
under sensitivityMaps/motorBike). Blue areas should be moved according to the sur-
face normal (“inwards”) to reduce drag while red areas should be moved in the oppo-
site direction. The four subfigures give the smoothed sensitivity map, computed with
a progressively larger smoothing radius.

2.4.3.3 surfacePoints

Same as surface, section 2.4.3.2, but sensitivities are computed w.r.t. the normal dis-
placement of boundary points, not faces. When sensitivity maps are of interest, this
option should be preferred to surface since, in a hypothetical mesh movement, the
boundary points would be moved, causing the change of the boundary faces. Upon
computation, a pointScalarField named pointSensNormal, appended with the name
of the adjointSolver, will be written at the current time-step folder for each adjoint-
Solver declared, section 2.3.1. Entries discussed in section 2.4.3.2 are valid here as well,
with the exception of the ones corresponding to sensitivity smoothing.

2.4.3.4 shapeESI

This option computes sensitivity derivatives for shape optimisation using the so-called
E-SI approach, [4]. Sensitivities are computed using the chain rule, i.e.

δJ

δbn
= δJ

δxi

δxi

δbn
(2.15)
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when δJ/δxi is the sensitivity map (see section 2.4.3.2) and δxi /δbn is computed an-
alytically on the surface, based on the chosen design variables. The default settings
provided in section 2.4.3.2 are used to compute the sensitivity map and can be altered
in the designVariables dictionary if needed.

Upon computation, the sensitivity derivatives are written in a file named after the
design variables’ type, appended by the adjointSolver name and the time-step value
and located in the optimisation/derivatives folder.

shapeOptimisation/sbend/laminar/primalAdjoint

2.4.3.5 shapeFI

This option computes sensitivity derivatives for shape optimisation using the so-called
FI approach, [4]. This method requires the computation of the grid sensitivities δxk

δbn
for the entire computational domain and for each design variable. Hence, computing
sensitivities with this approach can be time consuming for large numbers of design
variables. Grid sensitivities can be computed analytically if the design variables cor-
respond to volumetricBSplines. For Besier design variables, a vectorial Laplace equa-
tion needs to be solved for each design variable, to propagate the parameterisation
information given in the d xi d X j _i files (see also section 2.4.2.2) to the interior mesh.
The maximum number of iterations and convergence criterion for these PDEs are read
from the optional dxdbSolver subDict; if not provided, the default values given below
will be used.

type shape ;
shapeType Bezier ;
sensi t iv i tyType shapeFI ;
patches ( pressure suction ) ;
dxdbSolver
{

iters 100;
tolerance 1.e-11;

}

A volVectorField named m is used for this task with zero fixedValue boundary con-
ditions for all patches. The m field is generated automatically by the code, unless read
from the current time-step folder. In addition, a solver for m should be added in fvSolu-
tion and a discretisation scheme for laplacian(m) should be added in fvSchemes/lapla-
cianSchemes, unless a default one is present. No relaxation is required for the solution
of these equations. Sensitivity derivatives are stored in the same location mentioned
in section 2.4.3.4.



2.4. OPTIMISATION 43

shapeOptimisation/sbend/laminar/opt/unconstrained/losses/SD

2.4.3.6 multiple

designVariables
{

type shape ;
shapeType Bezier ;
sensi t iv i tyType multiple ;
s e n s i t i v i t y Ty p e s ( FI ESI SI ) ;
patches ( lower upper ) ;
FI
{

sensi t iv i tyType shapeFI ;
patches ( lower upper ) ;

}
ESI
{

sensi t iv i tyType shapeESI ;
patches ( lower upper ) ;

}
SI
{

sensi t iv i tyType shapeESI ;
patches ( lower upper ) ;
includeMeshMovement f a l s e ;

}
}

Provides a framework for computing multiple types of sensitivity derivatives, mainly
for the purpose of comparison (i.e. not optimisation). Sensitivities will be computed
for all sub-dictionaries present in the sensitivityTypes wordList.

shapeOptimisation/sbend/laminar/primalAdjoint

2.4.4 updateMethod

updateMethod
{

method steepestDescent ;
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/ / eta 1 ; / / optional
lineSearch
{

type ArmijoConditions;
}

}

The method used to update the design variables is defined in this dictionary. All
methods update the design variables using a scheme of the form

bnew
i = bol d

i +ηpi (2.16)

where b are the design variables, p the update direction and η a user-defined (either
explicitly or implicitly, see next entries) step. The dictionary entries read

method (steepestDescent, conjugateGradient, BFGS, DBFGS, LBFGS, SR1, constraint-
Projection, SQP, nullSpace, ISQP, MMA)
Defines the method for updating the design variables. Only the constraintProjection,
SQP, ISQP, nullSpace and MMA methods can handle constraints, with only the latter
three handling inequality and bound constraints.

A short description of the entries required by each update method follows.

Update methods for unconstrained optimisation

2.4.4.1 steepestDescent

This is the simplest (but least efficient) method to update the design variables. The
update vector is computed as

pi =− δJ

δbi
(2.17)

No additional dictionary entries are required.

2.4.4.2 conjugateGradient

The Conjugate Gradient method, [2], for updating design variables. Significantly faster
than steepestDescent but can still tolerate discrepancies in the sensitivities, in cases
where some balance should be struck between accuracy and stability. An additional
dictionary might be provided
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conjugateGradient
{

betaType FletcherReeves ;
}

betaType (FletcherReeves, PolakRibiere, PolakRibiereRestarted)
An optional entry choosing the formula to update the β variable in Conjugate Gradi-
ent, [7]. Defaults to FletcherReeves which has proved to be the most robust and should
be preferred.

shapeOptimisation/motorBike

2.4.4.3 BFGS

method BFGS ;
BFGS
{

nSteepestDescent 1 ;
etaHessian 1 ;
scaleFirstHessian true ;

}

The quasi-Newton BFGS method [7]. The update is computed through

δ2 J̃

δbiδb j
p j =−ηH

δJ

δbi
(2.18)

where δ2 J̃
δbiδb j

is an approximation of the objective function Hessian and ηH is a user-

defined constant. BFGS and its limited memory variant (see section 2.4.4.5) are prob-
ably the most widely used methods to update the design variables in general optimi-
sation problems. Their convergence is significantly faster than conjugateGradient or
steepestDescent, however they require highly accurate sensitivity derivatives. In cases
that the primal and adjoint equations are converging without difficulties, (L)-BFGS
should be the preferred methods; otherwise, conjugateGradient should be employed.
The convergence rates of BFGS and steepestDescent can be compared by running the
cases under

shapeOptimisation/sbend/laminar/opt/unconstrained/losses/SD
shapeOptimisation/sbend/laminar/opt/unconstrained/losses/BFGS
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nSteepestDescent 1;
Number of steepest descent updates to be conducted before applying the BFGS ap-
proach. Should be at least one, with higher values potentially needed in stiff problems.
The η value defined (explicitly or implicitly) in updateMethod will be used for these up-
dates.

etaHessian 1;
In Hessian-based methods, the η value should theoretically be equal to 1. Since, how-
ever, BFGS is a quasi-Newton method an ηH value can also be provided. It is usually in
the range of [0.5-1].

scaleFirstHessian (true|false);
Whether to scale the first Hessian matrix computed using a correction proposed in [7].
Usually improves the convergence rate of the method.

2.4.4.4 DBFGS

Similar to BFGS, but the vectors included in the rank-2 update of the Hessian matrix
can be “damped” to maintain a positive-definite Hessian matrix throughout the opti-
misation, [7] (section 18.4). The damped formula is applied if si yi < γsi Bi j s j , where
si is the last update of the design variables, yi is the difference between the sensitivity
derivatives of the last two optimisation cycles, Bi j is the approximate Hessian and γ

defines the threshold for applying the damping, tunable through gamma in the DBFBS
dictionary, with a default value of 2. All other inputs described in section 2.4.4.3 can be
applied here too.

2.4.4.5 LBFGS

method LBFGS ;
LBFGS
{

nSteepestDescent 1 ;
etaHessian 1 ;
nPrevSteps 10;

}

The limited memory variant of the BFGS quasi-Newton method [6]. LBFGS is closely
related to BFGS, however, instead of approximating and storing the (inverse) Hessian
matrix, only a few vectors are stored that represent it implicitly. Hence, LBFGS is usu-
ally employed when the number of design variables is too large to allow storing the
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Hessian matrix (for instance, when supporting the ISQP method for topology optimi-
sation, see section 2.4.4.10). LBFGS has the same (optional) entries as BFGS (with the
exception of scaleFirstHessian), with the addition of the following entries

nPrevSteps 10;
Number of vectors used to implicitly retrieve the approximation to the Hessian matrix.
A relatively small number, usually around 10, is enough in most problems.

useSDamping, useYDamping false;
Apply a damping similar to the one mentioned in section 2.4.4.4, on either the s or y
vectors, to maintain the positive-definiteness of the Hessian matrix.

2.4.4.6 SR1

method SR1 ;
SR1
{

nSteepestDescent 1 ;
etaHessian 1 ;

}

The Symmetric Rank One (SR1) quasi Newton update method [7]. Similar con-
vergence characteristics as BFGS and identical optional entries, with the exception of
scaleFirstHessian.

Update methods handling equality constraints

2.4.4.7 constraintProjection

method constraintProjection ;
constraintProjection
{

useCorrection true ;
}

constraintProjection is an updateMethod that supports the handling of equality con-
straints, [13] . In particular, the update direction is that of steepest descent, if the part
that is normal to all constraint isolines is subtracted. constraintProjection is wall suited
for tackling (almost) linear constraint functions throughout the optimisation. One op-
tional entry can be provided
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useCorrection (true|false)
Whether or not to use a correction taking into consideration the non-linearity of the
constraint function w.r.t. the design variables. It should be noted that if useCorrection
is set to false, constraintProjection can be used to only keep the value of the constraint
function the same as in the first optimisation cycle and not to obtain a user-defined
target value.

shapeOptimisation/naca0012/lift/opt/constraintProjection

2.4.4.8 SQP

method SQP;
SQP
{

etaHessian 0 . 8 ;
nSteepestDescent 1 ;
scaleFirstHessian true ;

}

SQP implements the Sequential Quadratic Programming method for updating the
design variables in the presence of equality constraints, [7], in order to iteratively sat-
isfy the Karush-Kuhn-Tucker (KKT) conditions. The necessary Hessian matrix is ap-
proximated using BFGS and, hence, its optional entries are those described in section
2.4.4.3. SQP, like BFGS for unconstrained optimisation problems, exhibits a very fast
converge but requires a high accuracy of the sensitivity derivatives (see also comments
in 2.4.4.3).

shapeOptimisation/sbend/laminar/opt/constrained/SQP

Update methods handling inequality constraints

2.4.4.9 nullSpace

The nullSpace update method, [1], can handle inequality and bound constraints. The
update of the design variables is split into a null-space approach, which reduces the
objective function while keeping the constraint values constant in a first-order/linearised
sense, and a range-space approach that reduces the constraint values by a desired
amount. The concept is somehow similar with the one of constraintProjection, ex-
tended however so support inequality constraints and a mechanism for excluding con-
straint gradients from the null-space that “align” with the objective gradient, through
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the solution of a cheap dual problem of the size of the flow-related (i.e.non bound-
related) constraints. The method has proved to perform well in topology optimisation
problems, has a cheaper cost per update computation than ISQP (see section 2.4.4.10)
but usually converges slower than the latter. The entries related to it follow

method nullSpace ;
nullSpace
{

maxIters 6000;
maxLineSearchIters 10;
dualTolerance 1.e-12;
violatedConstraintsThreshold 1.e-3;
perturbation 1.e-2;
adaptiveStep true;
lastAcceleratedCycle 20;
strictMaxDVChange false;
maxDVChange maxInitChange;
targetConstraintReduction 0.5;

}

maxIters: 1000
Maximum number of Newton iterations for solving the dual sub-problem (includes
iterations from all tolerance values used for the inequality constraints).

maxLineSearchIters: 10
Maximum number of line search iterations for determining the step of the update dur-
ing the solution of the sub-problem.

dualTolerance: 1.e-12
The dual sub-problem is solved with an interior point method, using a sequence of
stricter tolerances on the inequality constraints. This value represents the final/stricter
tolerance.

violatedConstraintsThreshold: 1.e-3
The dual sub-problem includes only the violated and saturated constraints. Since,
however, these could change from one optimisation cycle to the next, especially if
the optimal solution lays in the vicinity of the target constraint values, a continuous
change in this set of constraints could cause the optimisation to oscillate. To avoid
this, non-violated constraints, up to a value of violatedConstraintsThreshold are also
included in the set of constraints included in the dual sub-problem.
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perturbation: 1.e-2
If all design variables lay on their bounds and there is at least one violated flow-related
constraint, the system of equations of the dual sub-problem becomes singular. To
avoid this, perturbation is added/subtracted from the design variables on the low-
er/upper bounds, at the beginning of the optimisation loop.

adaptiveStep: true
The null- and range-space updates are multiplied by scalars a J and aC , respectively, to
put emphasis on the reduction of either the objective or the constraints of the optimi-
sation and to accelerate the convergence. These values can be adjusted throughout the
optimisation cycles (and up to the lastAcceleratedCycle) if adaptiveStep is set to true. In
specific, a J is computed such that the maximum change of the design variables in each
optimisation cycle, up to the lastAcceleratedCycle, is equal to maxDVChange; the latter
can be either provided directly or defaults to maxInitChange. If strictMaxDVChange
is set to false, the a J value computed at the lastAcceleratedCycle will be kept constant
throughout the rest of the optimisation loop. Otherwise, a J might be reduced to main-
tain the maximum update of the design variables per optimisation cycle smaller than
the maxDVChange. In any case, a J will not increase after the lastAcceleratedCycle.

targetConstraintReduction: 0.5
This entry is used to indirectly define the aC value multiplying the range-space part
of the update, related to the reduction of the constraints. In each optimisation cycle,
constraints of the form ck+1 < 0 are relaxed as, ck+1 − (1− t )ck < 0 where c is the con-
straint value, the exponent indicates the optimisation cycle counter and t is the target
reduction of the constraint in this optimisation cycle, expressed as a fraction of its cur-
rent value that can be set through targetConstraintReduction. A value of 1 means that
no modification is applied to the constraint whereas a value of 0 means than even an
infinitesimal reduction of the constraint is acceptable.

2.4.4.10 ISQP

method ISQP ;
ISQP
{

etaHessian 0 . 8 ;
epsMin 0.7;
maxIters 1000;
maxLineSearchIters 10;
maxDxIters 1000;
relTol 0.01;
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preconditioner diag;
targetConstraintReduction 1;

}

Similar to SQP but has also the ability to tackle inequality constraints as well as
bounds for the design variables. The Hessian of the Lagrangian function is approxi-
mated using LBFGS and the Quadratic Programming (QP) problem, which might in-
clude inequality constraints, is solved using an interior point method [7]. Each itera-
tion of the QP problem requires the solution of a potentially dense system of equations
with the size of the active design variables and can, hence, have a non-negligible cost
depending on their number (e.g. topology optimisation). This system is solved using
a matrix-free Conjugate Gradient algorithm using preconditioners taking advantage of
its structure. The optional entries of ISQP are those described in section 2.4.4.5, with
the additions of

epsMin: 1.e-07
The QP problem is solved with an interior point method, using a sequence of stricter
tolerances on the inequality constraints. This value represents the final/stricter toler-
ance.

maxIters: 1000
Maximum number of Newton iterations for solving the QP problem (includes itera-
tions from all tolerance values used for the inequality constraints).

maxLineSearchIters: 10
Maximum number of line search iterations for determining the step of the update dur-
ing the solution of the QP problem.

maxDxIters: 1000
Maximum number of steps for the matrix-free Conjugate Gradient solver of the QP
problem.

relTol: 0.1
Similar notion to relTol as found in fvSolution/solvers but this time for the solution of
the equations of the QP problem.

preconditoner: (diag, invHessian, ShermanMorrison)
The preconditioner of the matrix-free Conjugate Gradient solver of the QP problem.
For cases with many design variables, it can make a significant difference in the CPU
cost of solving the QP problem. Defaults to a diagonal preconditioner including the
inverse of the diagonal part of the approximate Hessian, enhanced with quantities re-
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lated to bound constraints, if present. The invHessian preconditioner uses the inverse
of the approximate Hessian matrix, computed through LBFGS, as the preconditoner
while the ShermanMorrison one augments the latter using the Sherman-Morrison for-
mula for computing the inverse of a matrix appended by a rank-one update [14]. Sher-
manMorrison has the largest cost per preconditioner-vector product which depends
on the number of (non-bound) constraints but usually leads to the fastest convergence
in terms of overall QP problem iterations and the lowest CPU cost.

targetConstraintReduction: 1
The linearisation of the optimisation problem might lead to QP problems with no fea-
sible solutions, depending on the initialisation. This can lead to very expensive of
even divergent solutions for the QP problem. To relax them, a similar approach to
that mentioned in the targetConstraintReduction entry of section 2.4.4.9 is used, using
max

(
ck+1 − (1− t )ck ,ck+1

) < 0 as the relaxed form of the constraint. A typical value
used in topology optimisation is 0.1.

Examples of the use of ISQP for shape and topology optimisation can be found in

shapeOptimisation/naca0012/laminar/multipleConstraints
topologyOptimisation/monoFluidAero/laminar/3DBox/
losses-mass-uniformity-SQP

whereas a comparison of nullSpace and ISQP for a topology optimisation problem can
be found in

topologyOptimisation/monoFluidAero/laminar/3DBox/losses-mass-uniformity
topologyOptimisation/monoFluidAero/laminar/3DBox/
losses-mass-uniformity-SQP

2.4.4.11 (GC)MMA

The Method of Moving Asymptotes (MMA) [16] handles inequality constraints as well
as bounds for the design variables. The Globally Convergent variant of MMA (GCMMA)
[18] is also implemented, in the form of a line search method. The mathematical op-
timisation problem solved in each optimisation cycle MMA is solved using an interior
point method and the maxIters, maxLineSearchIters have the same meaning as in sec-
tion 2.4.4.10. A number of optional entries exists too, with names and effects similar to
the ones presented in [17]. In contrast to other methods, MMA does not use a step size
and hence eta should always be set to 1.

The corresponding dictionary is set up as

updateMethod
{
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method MMA;
eta 1;
c 100;
d 1;
z 1;
alpha0 1;
zeta 1;
maxIters 1000;
maxLineSearchIters 10;
asymptoteDecrease 0.7;
asymptoteIncrease 1.2;
move 0.5;
raa0 1.e-05;
variableRho false;

}

lineSearch
{

method GCMMA;
maxIters 10;

}

topologyOptimisation/monoFluidAero/laminar/1_Inlet_2_Outlet/levelSet/
R_10x_NB_01x

■
The rest of the (optional) entries in the updateMethod dictionary read

eta 1;
The η value, multiplying the update of the design variables, (see eq. (2.16)), is set here.
If maxInitChange is set in the designVariables dictionary, this entry can be omitted.

lineSearch none;
Line search methods can be used to adjust the eta value between successive optimisa-
tion cycles. Each type of line search method attempts to find an eta value that satisfies
a certain kind of conditions (see [7] for more details); if these conditions are not met,
the last update is undone and the previously computed p direction (see eq. (2.16)) is
multiplied with a new eta value. Hence, line search methods can be seen as executing
an inner “optimisation loop” identifying an appropriate step value within each optimi-
sation cycle. Their use is optional; if none is provided (i.e. the lineSearch dictionary is
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missing), the initial eta value will be maintained for all optimisation cycles. Additional
entries in the lineSearch dictionary read

lineSearch
{

type ArmijoConditions ;
minStep 0.3;
maxIters 4;
c1 1.e-04;
ratio 0.7;

}

type (ArmijoConditions, GCMMA, none)
The type entry defines what kind of condition should be met for accepting the current
eta value. According to the ArmijoConditions, the following inequality should hold in
order to accept the current eta value

φ(b+ηs) ≤φ(b)+ c1ηD(φ(b);s), (2.19)

where D(φ(b);s) is the directional derivative of φ w.r.t. b in the direction of s and φ is
the l1 merit function defined as [7]

φ= J +µ
M∑

i=1
|ei | (2.20)

µ= max(|λi |), i ∈ [1, M ]

In eq. (2.19), the default value of c1 is 10−4 as suggested in [7] for quasi-Newton ap-
proaches computing s. The initial step is tested and if eq. (2.19) is not satisfied, it is
successively reduced by a factor of ratio for a maximum of maxIters times and the pri-
mal equations are solved anew. In eq. (2.20), λi are the Lagrange multipliers in case
SQP is used as the updateMethod and ei , i ∈ [1, M ] are the M constraint values; if no
constraint is present, µ= 0. minStep prevents the eta value from being reduced below
a certain threshold. Assigning type to none is the equivalent of excluding the lineSearch
dictionary altogether.

shapeOptimisation/motorBike

On the other hand, GCMMA, as described in [18], is a method to adapt the update
of the design variables when using MMA as the updateMethod. In contrast to other
line search methods which maintain the direction and change the step size, GCMMA
may change the update direction to satisfy criteria related to sufficient reduction of the
objective and constraint functions. Nevertheless, the notion of rolling back an update,
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modifying it and checking for some sufficient reduction criteria fits with the concep-
tion of line search methods, justifying the implementation of GCMMA as such. No
entry apart from maxIters is utilised by GCMMA.
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Chapter 3

fvOptions

In topology optimisation, source terms of the form βmax IΦ
(
β
)
Φ, where βmax is a di-

mensioned scalar quantity discussed in section 2.4.2.1, Φ is the unknown field of the
PDE and β is the fluid-solid indicator field, are introduced in the primal and adjoint
equations, to drive the flow/adjoint solution to zero in the solidified areas of the com-
putational domain. These source terms are introduced through the fvOptions dictio-
nary, residing in the system directory. Such source terms should be added to the primal
momentum equations, the turbulence model PDEs and the eikonal equation for com-
puting distances, as well as their adjoint counterparts. An example of the correspond-
ing dictionary follows:

sources
{

type topOSource ;
names (U nuTilda yWall Ua nuaTilda da ) ;
function BorrvallPetersson ;
b 10;
interpolat ionField beta ;

}

type: topOSource
is used to introduce this kind of source terms in topology optimisation problems.

names
expects a list with the names of the fields corresponding to the equations in which the
porosity-based source terms will be added. It should be reminded that if more that
one primal or non-null adjoint solvers exist, the name of their corresponding fields
will be appended with the solver name (see also sections 2.2.1 and 2.3.1.1), requiring
an adjustment of the names list. Such an example is given in

57
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topologyOptimisation/monoFluidAero/turbulent/1_Inlet_2_Outlet/porosityBased/
BP/losses-massConstr

The function entry is responsible for choosing function IΦ mentioned in the first
line of this chapter. The available options are:

BorrvallPetersson

IΦ(β) = β

1+b
(
1−β) (3.1)

with b controlling the steepness of the function w.r.t. β; this is defined by the entry b.
A similar entry exists in most of the following functions as well. This function is usu-
ally employed when we want to prevent small β values from introducing considerable
source terms to the flow equations (for instance, when choosing a high βmax value).

exp
IΦ

(
β
)= e−b(1−β)− (

1−β)
e−b (3.2)

linear
IΦ

(
β
)=β (3.3)

SIMP
IΦ

(
β
)=βb (3.4)

sinh

IΦ
(
β
)= 1− si nh

[
b

(
1−β)]

si nh(b)
(3.5)

tanh The expression of this function is given by eq. (A.5). The eta entry corresponds
to η in eq. (A.5) and is defined in the tanh dictionary as
eta 0.5;

interpolationField (beta);
is used to define the argument of the penalisation function IΦ. For the moment, “beta”
is the only available option.



Chapter 4

fvSolution

Additional entries in the solvers and relaxationFactors subDicts of fvSolution need to be
provided for each adjoint-related quantity that is computed through the solution of a
PDE. In general, the same linear solver used to solve the discretized primal PDE is also
used for its adjoint counterpart. In case multi-point runs are conducted, wildcards can
be used to avoid repetition. Regarding the relaxationFactors, in industrial cases, the
typical setup of the primal mean flow quantities (p 0.3; U 0.7;) is reversed for the adjoint
problem (pa 0.7; Ua 0.3;). In addition, relaxation factors for the adjoint turbulence
variables are generally small (≈ 0.1;) for industrial cases. A relaxation of about 0.5 is
utilized when solving the adjoint distance PDE for da. No relaxation is required for
solving the adjoint to the grid displacement PDE for ma.

sensitivityMaps/naca0012/turbulent/liftFullSetup
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Chapter 5

fvSchemes

Additional entries need to be provided in all subDicts of fvSchemes in order to solve the
adjoint PDEs. Indicative entries with some comments follow

gradSchemes
{

gradUATC cellLimited Gauss l i n e a r 1 ;
gradUaATC cellLimited Gauss l i n e a r 1 ;

}

The gradSchemes entries above are set to define the discretization of the grad terms
involved in the computation of the ATC term, section 2.3.1.1.2. A cellLimited scheme
is usually applied in industrial cases whereas a non-limited scheme can be applied in
simpler cases.

divSchemes
{

div ( −phi ,Ua) bounded Gauss linearUpwind gradUaConv ;
div ( −phi , nuaTilda ) bounded Gauss linearUpwind gradNuaTildaConv ;
div ( −phi , ka ) bounded Gauss linearUpwind gradKaConv ;
div ( −phi ,wa) bounded Gauss linearUpwind gradWaConv ;
div ( −yPhi , da ) Gauss linearUpwind gradDaConv ;

}

A divScheme of the form of div(-phi,adjointField) should be used for the convection
term of the adjoint mean flow and turbulence model PDEs; div(-yPhi,da) should be
used for the adjoint distance convection term. A first-order scheme (i.e. Gauss up-
wind) might be needed to ensure convergence in challenging industrial cases.
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laplacianSchemes
{

default Gauss l i n e a r limited 0 . 3 3 3 ;
}

The default discretization scheme usually suffices for the discretization of the adjoint
diffusion term as well as various auxiliary PDEs including a Laplace operator, such as
the adjoint to the grid displacement PDE.

sensitivityMaps/naca0012/turbulent/liftFullSetup

Note: In case the useSolverNameForFields switch is set to true in either the primal, sec-
tion 2.2.1, or adjoint, section 2.3.1.1, setup, the field names in the entries of fvSchemes
should be adapted accordingly in order to use the desired discretization schemes. Spe-
cial attention should be paid to the divSchemes.

sensitivityMaps/sbend/turbulent/lowRe/multiPoint

In addition, if average is set to true in the primalSolver dict (section 2.2.1.1.1) and aver-
aging iterations have been performed for the primal, the adjoint equations that follow
will be solved using the mean primal fields. This should be taken into consideration
when defining the discretization schemes for the adjoint equations. For instance, div(-
phiMean,Ua) should be used instead of div(-phi,Ua).

sensitivityMaps/motorBike

Wildcards can be used to cover both above-mentioned cases, as follows

divSchemes
{

" div \( − phi . * ,Ua. * \ ) " bounded Gauss linearUpwind gradUaConv ;
}
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adjointRASProperties

adjointRASModel adjointSpalartAllmaras ;
adjointTurbulence on ;

The adjointRASProperties dictionary is located in constant and is used to define the
adjoint turbulence model to be used. Its entries are

adjointRASModel (adjointLaminar, adjointSpalartAllmaras, adjointkOmegaSST)
Type of the adjoint turbulence model. adjointLaminar is used either when solving the
adjoint to laminar flows or when the “frozen turbulence” assumption is made. No ex-
tra PDEs are solved when using this option. The adjointSpalartAllmaras and adjoin-
tkOmegaSST options solve the PDEs of the adjoint to the Spalart Allmaras, [10, 19], and
k −ω SST, [3], turbulence models. Boundary conditions, solvers, relaxation factors and
discretization schemes should be set for nuaTilda and ka, wa, respectively. Details for
each of the above are given in chapters 4, 5 and 7.

adjointTurbulence (on|off)
Whether or not to solve the adjoint to the turbulence model PDEs.

sensitivityMaps/naca0012/turbulent/liftFullSetup

6.1 adjointSpalartAllmaras

An optional dictionary can be provided for the adjointSpalartAllmaras model. Its en-
tries follow a similar pattern to the ones in ATCModel, section 2.3.1.1.2, for smoothing
out numerically challenging terms.

adjointSpalartAllmarasCoeffs
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{
nSmooth 0 ;
zeroATCPatchTypes ( wall patch ) ;
maskType pointCells ;

}

sensitivityMaps/motorBike

6.2 adjointkOmegaSST

No additional options are available for this model.

shapeOptimisation/sbend/turbulent/kOmegaSST/opt
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Adjoint boundary conditions

Files defining the adjoint boundary conditions (BCs) should be provided at the start-
Time folder. The type of adjoint BCs to be applied in each patch depends on the type of
primal BCs used there. In the sections that follow, general guidelines are provided for
the definitions of BCs for the adjoint velocity (Ua), adjoint pressure (pa), adjoint tur-
bulence model (nuaTilda), adjoint distance (d a) and adjoint grid displacement (ma)
fields. Boundary conditions for the latter two are set by the solver automatically and
are mentioned here in the sake of completeness.

For constrained patches (i.e. slip, symmetry, symmetryPlane, cyclic, etc), the same
BC types imposed on the primal fields should also be applied to their adjoint counter-
parts.

7.1 Ua boundary conditions

• adjointInletVelocity: Inlet boundaries where a fixedValue BC is imposed on U
and a zeroGradient BC is used for p.

• adjointOutletVelocity: Outlet boundaries where a zeroGradient BC is imposed on
U and a fixedValue BC is used for p.

• adjointOutletVelocityFlux: Same as adjointOutletVelocity but for cases in which
back-flow is observed for U at the outlet.

• adjointWallVelocity: Wall boundaries where a fixedValue BC is imposed on U and
a zeroGradient BC is used for p. If nutUSpaldingWallFunction is imposed on nut
(high-Re turbulence models), the boundary condition will automatically apply
the adjoint wall function technique, [10]. Otherwise, a typical low-Re boundary
condition will be applied, [10].

65



66 CHAPTER 7. ADJOINT BOUNDARY CONDITIONS

• adjointWallVelocityLowRe: Same as adjointWallVelocity but only for low-Re or
laminar flows.

• adjointRotatingWallVelocity: Same as adjointWallVelocity but also provides the
contributions to the sensitivity derivatives due to the change in the boundary
face positions, in case rotatingWallVelocity is used for the primal run.

• adjointFarFieldVelocity: Far-field boundaries where an inletOutlet or freestream
BC is imposed on U .

7.2 pa boundary conditions

• zeroGradient: Inlet and wall boundaries where a fixedValue BC has been imposed
on U and a zeroGradient BC has been used for p.

• adjointOutletPressure: Outlet boundaries where a zeroGradient BC has been im-
posed on U and a fixedValue BC has been used for p.

• adjointFarFieldPressure: Far-field boundaries where an outletinlet BC is imposed
on p.

7.3 nuaTilda boundary conditions

• adjointInletNuaTilda: Inlet boundaries where a fixedValue BC is imposed on nu-
Tilda.

• adjointOutletNuaTilda: Outlet boundaries where a zeroGradient BC is imposed
on nuTilda.

• adjointOutletNuaTildaFlux: Same as adjointOutletNuaTilda, but for cases in which
back-flow is observed for U at the outlet.

• fixedValue: Wall boundaries, with or without wall functions.

• adjointFarFieldNuaTilda: Far-field boundaries where an inletOutlet or freestream
BC is imposed on nuTilda.

7.4 ka boundary conditions

• adjointZeroInlet: Inlet boundaries where a fixedValue BC is imposed on k.

• adjointOutletKa: Outlet boundaries where a zeroGradient BC is imposed on k.
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• adjointOutletFlux: Same as adjointOutletKa, but for cases in which back-flow is
observed for U at the outlet.

• kaqRWallFunction: Wall boundaries, where a kqRWallFunction BC is imposed
on k.

• adjointFarFieldTMVar1: Far-field boundaries where an inletOutlet or freestream
BC is imposed on k.

7.5 wa boundary conditions

• adjointZeroInlet: Inlet boundaries where a fixedValue BC is imposed on omega.

• adjointOutletWa: Outlet boundaries where a zeroGradient BC is imposed on omega.

• adjointOutletFlux: Same as adjointOutletWa, but for cases in which back-flow is
observed for U at the outlet.

• waWallFunction: Wall boundaries, where an omegaWallFunction BC is imposed
on omega.

• adjointFarFieldTMVar2: Far-field boundaries where an inletOutlet or freestream
BC is imposed on omega.

7.6 ma boundary conditions

• fixedValue uniform 0: All boundaries with a non-constrained type.

7.7 da boundary conditions

• fixedValue uniform 0: All inlet and outlet boundaries.

• zeroGradient All wall boundaries.
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Chapter 8

dynamicMeshDict

The setup of the volumetric B-splines morpher is explained in detailed in section 8.1.
Setting up a Laplace-based grid displacement PDE for use in conjunction with 2D
Bézier–Bernstein parameterizations in presented in section 8.2.

8.1 Volumetric B-splines Morpher

8.1.1 Control points and B-splines properties

Before executing the actual optimisation loop, some pre-processing steps have to be
undertaken in order to define the control points, the coordinates of which will act as
the design variables of the optimisation problem. The mathematical background of the
volumetric B-splines morpher is presented in detail in [11] and some basic definitions
are repeated herein in the sake of completeness.

Let bi j k
m ,m ∈ [1,3], i ∈ [0, I ], j ∈ [0, J ],k ∈ [0,K ] be the Cartesian coordinates of the

i j k-th control point of the 3D structured control grid, fig. 8.1. I , J and K are the num-
ber of control points (minus 1) per control grid direction. The Cartesian coordinates
x= [x1, x2, x3]T = [x, y, z]T of a CFD mesh point residing within the boundaries defined
by the control grid are given by

xm(u, v, w) =
I∑

i=0

J∑
j=0

K∑
k=0

Ui ,pu(u)V j ,pv (v)Wk,pw (w)bi j k
m (8.1)

Here, u= [u1,u2,u3]T = [u, v, w]T are the mesh point parametric coordinates, U ,V ,W
are the B-splines basis functions and pu, pv, pw their respective degrees, which may
be different per control grid direction.

Details about B-splines basis definitions and properties can be found in [12]. Com-
puting the Cartesian coordinates of any parameterized mesh point is straightforward,
at a negligible computational cost, as long as its parametric coordinates u are known.
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Mesh parametric coordinates can be computed with accuracy, since a mapping from
ℜ3(x, y, z) →ℜ3(u, v, w) is required. This means that volumetric B-splines can repro-
duce any geometry to machine accuracy.

Given the control points position, the knot vectors and the basis functions de-
grees, the parametric coordinates (u, v, w) of a point with Cartesian coordinates r =
[xr , yr , zr ]T can be computed by solving the system of equations

R(u, v, w) =
 x(u, v, w)−xr = 0

y(u, v, w)− yr = 0
z(u, v, w)− zr = 0

 (8.2)

where xm(u, v, w) are computed through eq. (8.1), based on the known b values. The
3×3 system of eq. (8.2) can be solved independently for each parameterized mesh
point using the Newton-Raphson method, after computing and inverting the Jacobian
∂xm/∂u j ,m, j ∈ [1,3]. Since the evaluation of the parametric coordinates of each point
is independent from any other mesh point, these computations may run efficiently in
parallel.

The aforementioned process has to be done only once and can be seen as the
“training phase” of the method. Then, after moving the control points b, the Cartesian
coordinates of each (internal or boundary) mesh point residing within the control grid
can be computed through eq. (8.1) at a very low cost, making volumetric B-splines a
powerful surface parameterization and mesh displacement tool.

The parameters for the volumetric B-splines morpher are defined in the constan-
t/dynamicMeshDict dictionary. A sample of the latter (excluding the header) is given
below, with some comments on its entries

solver volumetricBSplinesMotionSolver ;
volumetricBSplinesMotionSolverCoeffs
{

duct
{

type cartesian ;
nCPsU 9 ;
nCPsV 5 ;
nCPsW 3 ;
degreeU 3 ;
degreeV 3 ;
degreeW 2 ;

controlPointsDefinit ion axisAligned ;
lowerCpBounds ( −1.1 −0.21 −0.05) ;
upperCpBounds ( 1.1 0.39 0.15) ;
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Figure 8.1: Control grid consisting of 6×6×6 control points, around a 3D wing. Control
points are coloured based their j index value. Surface and volume mesh points, over
and around the wing, residing within the boundaries of the control grid (black box) will
be displaced following a possible displacement of the control points.

confineUMovement f a l s e ;
confineVMovement f a l s e ;
confineWMovement true ;
confineBoundaryControlPoints f a l s e ;

confineUMinCPs ( ( true true true ) ( true true true ) ) ;
confineUMaxCPs ( ( true true true ) ( true true true ) ) ;
confineVMinCPs ( ( true true true ) ) ;
confineVMaxCPs ( ( true true true ) ) ;
confineWMinCPs ( ( true true true ) ) ;
confineWMaxCPs ( ( true true true ) ) ;

}
}

One morphing box, similar to that presented in fig. 8.1, will be created for each sub-
Dict within volumetricBSplinesMotionSolverCoeffs. More than one control boxes are
supported, as long as they are not overlapping.
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8.1.1.1 Entries in each dict within volumetricBSplinesMotionSolverCoeffs

type (cartesian, cylindrical)
Coordinate system in which the control points are defined.

controlPointsDefinition (axisAligned, fromFile)
Control points can be defined in two different ways. If the axisAligned option is cho-
sen, a control grid aligned with the coordinates system defined by type will be con-
structed, by giving the coordinates of the two far points of the box in lowerCpBounds
and upperCpBounds, similar, for instance, to the way the boxToCell option is used in
topoSetDict. If the fromFile option is chosen, control points are read from the constan-
t/controlPoints/"name""timeName" file, where name is the name of the morphing box
(i.e. the name of the current subDict within volumetricBSplinesMotionSolverCoeffs)
and timeName is the current time index (0 if the optimisation is starting from scratch).
The above-mentioned file, apart from the typical OpenFOAM header, should include a
vectorList of the following format

controlPoints 27
(
( 0.133 −0.255 0.699 )
( 0.2015 −0.255 0.699 )
( 0.27 −0.255 0.699 )
( 0.133 0 0.699 )
( 0.2015 0 0.699 )
( 0.27 0 0.699 )
( 0.133 0.255 0.699 )
( 0.2015 0.255 0.699 )
( 0.27 0.255 0.699 )
( 0.133 −0.255 0.789 )
( 0.2015 −0.255 0.789 )
( 0.27 −0.255 0.789 )
( 0.133 0 0.789 )
( 0.2015 0 0.789 )
( 0.27 0 0.789 )
( 0.133 0.255 0.789 )
( 0.2015 0.255 0.789 )
( 0.27 0.255 0.789 )
( 0.133 −0.255 0.879 )
( 0.2015 −0.255 0.879 )
( 0.27 −0.255 0.879 )
( 0.133 0 0.879 )
( 0.2015 0 0.879 )
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( 0.27 0 0.879 )
( 0.133 0.255 0.879 )
( 0.2015 0.255 0.879 )
( 0.27 0.255 0.879 )
) ;

i.e., a vectorList named controlPoints, followed by the control points number and the
actual list of points. It should be noted that the order in which the points are written is
important and should be given by an iso-z, iso-y, iso-x loop (or an iso-W, iso-V, iso-U
loop, in the most general case).

nCPsU, nCPsV, nCPsW
Number of control points in the parametric directions, i.e. I+1, J+1 and K +1 in eq. 8.1.

degreeU, degreeV, degreeW
Basis function degrees in the three parametric coordinates (i.e. pu, pv and pw in eq. 8.1).
Regarding the choice of the basis functions degrees, a smaller polynomial degree will
lead to more localized (and less smooth) geometry changes. The maximum degree per
direction is nC Ps −1, which will lead to a parameterization in which all control points
affect all CFD grid points inside the parameterized domain. The suggested basis func-
tion degree is 3 since it gives the highly desirable property of local support while at the
same time maintains smoothness.

confineUMovement, confineVMovement, confineWMovement (true|false)
Whether to confine or not the movement of all control points in each of the direc-
tions of the coordinate system defined by type. The corresponding entries in v1912
were named confineX1movement, confineX2movement, confineX3movement and are
still supported.

confineBoundaryControlPoints (true|false)
When the control box separates the mesh in parameterized and non-parameterized
regions, the boundary control points of the control grid have to be fixed in order to
ensure C0 continuity at the interface of the two regions. This will ensure that mesh
elements will not overlap in the boundaries of the control grid, however, gradient and
curvature continuity might not be guaranteed. If these are of importance, the follow-
ing lists should be set accordingly:

confineUMinCPs, confineUMaxCPs, confineVMinCPs, confineVMaxCPs, confineWMinCPs,
confineWMaxCPs (empty lists)
More layers of control points can be kept fixed during the optimisation. The number of
control points to be kept fixed in each of the (U ,V ,W ) control grid directions (at the be-
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ginning -Min- and end -Max- of the control grid) can be controlled by the confine*CPs
variables. Each of these entries is a boolListList, i.e. a list of lists, containing three bools
each. A typical example of such an entry reads

confineUMinCPs ( ( true true true ) ( true true true ) ) ;

In this example, the movement of the first two columns of control points (corre-
sponding to the two triplets of booleans) in the beginning (confineUMinCPs) of the
U direction (confineUMinCPs) of the control grid is constrained in all three spatial
directions (each one corresponding to one of the three booleans in each triplet). All
confine*CPs entries are initialized to empty lists, meaning that no control points will
be kept fixed if the entries are not provided. The corresponding entries in v1912 were
named bound*CPs and are still supported.

shapeOptimisation/sbend/laminar/opt/unconstrained/losses/BFGS

readStoredData (true|false)
If readStoredData is set to true, the code will attempt to read the parametric coordi-
nates from a file named parametricCoordinate+name, where name is the name of the
current subDict within volumetricBSplinesMotionSolverCoeffs, if the file exists. Other-
wise, the parametric coordinates will be computed anew. For more information, see
section 8.1.1.2.

maxIterations (default=10)
Maximum number of Newton-Raphson iterations to be executed for each CFD grid
point inside the control box in order to compute its parametric coordinates.

tolerance (default=1.e-10)
Convergence criterion for the Newton-Raphson procedure executed to compute CFD
grid point parametric coordinates.

8.1.1.2 Computing parametric coordinates

The parametric coordinates for the points residing within the control boxes are com-
puted by solving a 3×3 system for each point, eq. (8.2). This has to be done only once, as
a pre-processing step of the optimisation loop. This will be done automatically by the
executable driving the optimisation or the one that computes sensitivity derivatives.
Since this step can be potentially expensive for large CFD meshes and a high number
of control points, the parametric coordinates are stored as a pointVectorField in the 0
folder, named parametricCoordinates"name", where name is the control box name (i.e.
name of the corresponding subDict within volumetricBSplinesMotionSolverCoeffs). If
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the entry readStoredData is set to true, the code will attempt to read a stored paramet-
ric coordinates file. If the file is not present, parametric coordinates will be computed
from scratch.

, Since the parametric coordinates depend on the control points positions and
the degrees of the basis functions, the parametricCoordinates* files have to either
be removed manually from the starting time-step folder, or the readStoredData
entry has to be set to false each time the control points setup is altered.

8.1.1.3 Visualizing the control points

It is often useful to visualize the control points comprising the control grid before run-
ning the optimisation loop. This can be done by running the writeMorpherCPs ap-
plication, see section 9.2.1.1. writeMorpherCPs reads dynamicMeshDict and produces
the optimisation/controlPoints/"name""TimeName".csv file, where name is the name of
control box and TimeName the current time index. The file contains 9 columns, includ-
ing the (x, y, z) coordinates of the control points, their (i , j ,k) values in the structured
control grid and 3 active flags indicating whether each control point is allowed to move
in each of the 3 directions defined by type (see section 8.1.1.1) during the optimisation.
The csv file can be visualized in Paraview following the steps listed below:

• Open the file from the File/Open menu and click Apply

• From the Filters/Alphabetical menu, choose TableToPoints

• Select Points:0, Points:1, Points:2 for the X,Y and Z Column, respectively, and
click Apply.

• Adjust the size and colouring of the points according to your preference.

Apart from generating a csv file before running the optimisation loop, similar files are
generated and stored in the same folder for visualization purposes each time a new
geometry is created during the optimisation process.

shapeOptimisation/sbend/laminar/opt/unconstrained/losses/BFGS

8.2 Laplace-based Grid Displacement Equation

In case an automatic optimisation loop is targeted for (2D) geometries that have been
parameterized using Bézier–Bernstein curves, the boundary movement has to be prop-
agated to the interior mesh. This can be done using a Laplace-based PDE and the mesh
movement solvers already existing in OpenFOAM. In particular, the velocityLaplacian
mesh motion solver is proposed, set up as
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dynamicFvMesh dynamicMotionSolverFvMesh ;

motionSolverLibs ( " libfvMotionSolvers . so" ) ;

solver velocityLaplacian ;

velocityLaplacianCoeffs
{

d i f f u s i v i t y uniform ;
}

It should be noted that the velocityLaplacian motion solver can cope with mesh
movement in relatively simple geometries but usually faces difficulties in complicated
boundary movements or fine meshes used for low-Re simulations. Using a diffusivity
option that is based on the inverse distance from the moved boundaries usually im-
proves the results. A pointVectorField named pointMotionU should be supplied, with
zero fixedValue conditions for all patches expect the coupled ones. The appropriate
boundary conditions for the movement in each optimisation cycle will be set automat-
ically by the code. A cellMotionU entry should also be set in fvSolution.solvers while the
default entry in system.fvSchemes.laplacianSchemes should suffice for the discretiza-
tion of the PDE.
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Applications

9.1 solvers

9.1.1 adjointOptimisationFoam

adjointOptimisationFoam is the main executable. It can be used either to just solve the
primal and adjoint equations and compute sensitivities or to execute an automated
shape optimisation loop. Its behaviour largely depends on the setup of the optimisa-
tionDict, as described in chapter 2. In the sections that follow, the differences between
the two above-mentioned modes of operation are briefly discussed.

9.1.1.1 Solution of the primal and adjoint equations and computation of sensitivi-
ties

In this mode, adjointOptimisationFoam functions in a way similar to simpleFoam, with
the ability to also solve the adjoint equations. It should be noted that the endTime entry
in controlDict will be ignored and the nIters entry in optimisationDict (sections 2.2.1.1
and 2.3.1.1.3), for each primal and adjoint solver, will be used to define the number
of iterations to be executed and the endTime. All primal solvers for which the active
keyword is set to true will be executed, followed by the adjoint ones and, finally, the
computation of sensitivity derivatives for all adjoint solvers for which the computeSen-
sitivities flag is true (section 2.3.1.1). Equations for all active primal and adjoint solvers
will be iterated either until the residual values declared in residualControl (sections
2.2.1.1 and 2.3.1.1.3)) have been achieved or the nIters value has been reached. Upon
stopping, each solver will write results to the hard drive, with writing also performed
based on the writeInterval defined in controlDict. During the solution of the primal
equations, if the active keyword of the adjointSolvers is set to true, the objective values
defined in those adjointSolvers will be evaluated during each iteration of the primal
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solver and their values will be written in optimisation/objective/timeName/objective-
Name+Instant+adjointSolverName.

sensitivityMaps/naca0012/turbulent/liftMinimumSetup

9.1.1.2 Automated shape optimisation loops

In this mode, adjointOptimisationFoam undertakes the execution of an automated
shape optimisation loop (i.e. solve the primal and adjoint equations, compute sen-
sitivity derivatives, update the design variables for n optimisation cycles), fig. 2.1. In
order to do so, the optimisationManager entry in optimisationDict should be set to
steadyOptimisation. The endTime in controlDict now stands for the number of opti-
misation cycles to be conducted, while the writeInterval entry defines the optimisa-
tion cycles interval in which (primal and adjoint) flow results will be stored to the hard
drive. It is recommended to set purgeWrite 0; and writeInterval 1; in controlDict in or-
der to store results from all the geometries analyzed during the optimisation loop. The
objective functions convergence is written in the optimisation/objective/timeName/ob-
jectiveName+adjointSolverName whereas the convergence of objective function values
within the iterations of the primal solver for all optimisation cycles is stored in optimi-
sation/objective/timeName/objectiveName+Instant+adjointSolverName.

shapeOptimisation/sbend/laminar/opt/unconstrained/losses/BFGS

9.2 utilities

A number of pre- and post-processing utilities related to adjoint-based optimisation
exist. These are briefly analyzed in what follows.

9.2.1 preProcessing

9.2.1.1 writeMorpherCPs

The writeMorpherCPs utility is used to output the volumetric B-splines morpher con-
trol points, as defined by the current setup in dynamicMeshDict in a form that is con-
venient for visualization, section 8.1.1.3. It should be noted that only the control point
positions are written, without computing the parametric coordinates of CFD grid points
residing within the control points box.
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9.2.2 postProcessing

9.2.2.1 computeSensitivities

The computeSensitivities utility is used to compute sensitivity derivatives at a post-
processing step, for a simulation in which the primal and adjoint fields have already
been computed but, for instance, computeSensitivities was set to false. The appropri-
ate dictionary entries must be defined, as discussed in section 2.4.3. Remember to also
set the computeSensitivities to true in the adjoint solver dicts, section 2.3.1.

9.2.2.2 cumulativeDisplacement

This utility is used to compute and write the displacement of all mesh points for each
geometry generated by an optimisation loop, from the initial geometry. The vectorial
difference of all mesh points (xnew

i − xol d
i ) is written in a pointVectorField named dis-

placement whereas the projection of this difference to the normal vector of the bound-
ary mesh points in the initial geometry ((xnew

i −xol d
i )nol d

i ) is written in a pointScalarField
named normalDisplacement. Keeping in mind the convention for the surface normal
unit vector, facing from the fluid to the solid boundaries, positive normal displace-
ments indicate a movement aligned to the geometry normal (“inwards” or “outwards”,
for external or internal aerodynamics, respectively); negative normal displacements
indicate a movement opposite to the geometry normal (“outwards” or “inwards” for
external or internal aerodynamics, respectively).

shapeOptimisation/sbend/laminar/opt/unconstrained/losses/BFGS
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Appendix A

A Short Introduction to Topology
Optimisation

This appendix briefly explains the concept of topology optimisation using the density
(porosity)-based approach and the source terms that are introduced in the flow equa-
tions. It is not intended as an exhaustive description of the method but rather as a
quick guide, to facilitate matching of the optimisationDict and fvOptions entries with
their counterparts in the design variables, the flow and adjoint equations.

In topology optimisation, the value-field of design variables α (“porosity” field) is
used to compute the so-called Brinkman penalisation terms that solidify (i.e. drive the
solution of the flow equation to zero) the part of the design domain that is counter-
productive with respect to (w.r.t.) the objective function J to be minimised. The α

field could be directly used to compute the Brinkman penalisation terms, however,
this could lead to noisy geometries and a dependency of the optimised solution on the
mesh resolution. Instead, a fluid-solid identification field, β, is used to compute the
penalisation terms; details on computing the β field based on α are given towards the
end of this appendix.

Parts of the computational domain with an (almost) unitary β value indicate the
solid area whereas (almost) zero β values correspond to the fluid part of the domain.
The interface between the two regions stands for the solid walls of the sought duct
system. To simulate the solidification of parts of the domain, flow equations are aug-
mented with β-dependent source terms, whose role is to deactivate the flow equations
over the solid. The so-modified flow equations, coupled with the Spalart-Allmaras [15]
one-equation turbulence model PDE, the Eikonal equation which computes distances
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∆ from the solid walls for steady flows of incompressible fluids read:

Rp =−∂v j

∂x j
=0 (A.1a)

Rv
i =v j

∂vi

∂x j
−∂τi j

∂x j
+ ∂p

∂xi
+βmax I v (β)vi =0 , i = 1,2(,3) (A.1b)

R ν̃=v j
∂ν̃

∂x j
− ∂

∂x j

[(
ν+ ν̃

σ

)
∂ν̃

∂x j

]
− cb2

σ

(
∂ν̃

∂x j

)2

−ν̃P (ν̃)+ν̃D (ν̃)+βmax I ν̃(β)ν̃=0 (A.1c)

R∆= ∂

∂x j

(
∂∆

∂x j
∆

)
−∆∂

2∆

∂x2
j

−1+βmax I∆(β)∆= 0 (A.1d)

where vi are the velocity components, p is the pressure divided by the fluid density,

τi j = (ν+νt )
(
∂vi
∂x j

+ ∂v j

∂xi

)
is the stress tensor, ν and νt are the bulk and eddy viscosities

respectively and P (ν̃) and D (ν̃) are the production and dissipation terms of the turbu-
lence model, respectively, [15]. Furthermore, the I v , I ν̃, I∆ functions are used to drive
the flow solution towards values corresponding to solid walls (see chapter 3 for the
available options of the I functions and how to define them). The βmax value is used to
ensure that the vi , ν̃ and∆ values are practically zero in the solidified domain. Its value
can be computed based on either the Darcy number, quantifying the ratio of viscous
and porous forces, [8],

Da = ν

βmaxL2
⇒βmax = ν

DaL2
(A.2)

or the product of the Reynolds and Darcy numbers, quantifying the ratio of momen-
tum and viscous forces

ReDa = U

βmaxL
⇒βmax = U

ReDaL
(A.3)

where L and U are a characteristic length and velocity magnitude of the case under
consideration, respectively. More on the computation of βmax can be found in section
2.4.2.1. The porosity-dependent terms added to eqs. (A.1b) to A.1d are implemented
as fvOptions, to allow for code modularity and adaptability, see chapter 3.

Often, in topology optimisation problems, checkerboard artifacts may appear in
the α field, in the course of the optimisation. To avoid these artifacts and mitigate the
effects of local grid size to the optimised solution, the regularisation of the porosity
field [5] is implemented. This is based on a Helmholtz-type filter [5] applied to the
porosity field α, namely

−
(

R

2
p

3

)2 ∂2α̃

∂x2
j

+ α̃=α (A.4)

where α̃ is the regularised porosity field and R can be seen as a smoothing/regularisa-
tion radius, usually computed as a function of the average grid cell size. Regularisation,
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as any other smoothing technique, unavoidably blurs the line between the fluid and
solidified domains. To increase the contrast of the α̃ field, a projection step, comput-
ing β based on α̃ is introduced, [5]

β= t anh
(
ηb

)+ t anh
[
b

(
α̃−η)]

t anh
(
ηb

)+ t anh
[
b

(
1−η)] (A.5)

with η= 0.5 and b being a sharpening parameter (higher values lead to a β field that is
close to binary). If no regularisation/projection is applied, β = α in eqs. (A.1). Inputs
related to regularisation and projection are described in detail in section 2.4.2.1. A
comparison of the α, α̃ and β fields for one of the tutorial cases is given in fig. A.1.

Figure A.1: Example of a topology optimisation problem, with the fluid entering the
domain from the left and exiting from bottom and right. From left to right the α, α̃ and
β fields.

Following the mathematical development outlined in [10], the continuous adjoint
PDEs to eqs. (A.1) can be derived:

Rq =−∂u j

∂x j
=0 (A.6a)
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R∆α=−2
∂

∂x j

(
∆α

∂∆

∂x j

)
+ν̃ν̃aC∆+βmax I∆(β)∆α=0 (A.6d)

where ui are the adjoint velocity components, q the adjoint pressure, ν̃a the adjoint to

the turbulence model variable, ταi j = (ν+νt )
(
∂ui
∂x j

+ ∂u j

∂xi

)
the adjoint stresses and ∆α the
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adjoint distance from the walls. Following the same trend as in eqs. (A.1), the adjoint
momentum, turbulence model and eikonal equations include Brinkman penalisation
terms too.
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