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Chapter 1

Introduction

The present User Manual serves as a guide for the setup and usage of the OpenFOAM ex-
ecutable adjointOptimisationFoam, included in OpenFOAM-v2006. Emphasis is given
on the dictionaries and entries required to setup the continuous adjoint solvers and
their utilities. The manual assumes that the reader is familiar with the OpenFOAM en-
vironment. No theoretical background for the adjoint method is provided in this doc-
ument, unless necessary for the explanation of the code setup. The reader should refer
to the relevant publications for details on the adjoint method, [3, 7, 11]. A complete
list of bibliographic references to the developed adjoint methods can be found in the
relevant publications listed here.

In the contents of this manual, the following conventions are used. Keywords men-
tioned in italics will refer to OpenFOAM dictionaries or dictionary entries. Blue color
will be used to identify dictionaries or entries that are optional. Red color will be used
to identify default values for variables, if they are not explicitly provided. Green color
will be used to indicate the path to certain tutorials. All tutorials pertaining to adjoin-
tOptimisationFoam can be found under

$FOAM_TUTORIALS/incompressible/adjointOptimisationFoam

Magenta color will be used to indicate that an option is run time modifiable.
Chapter 2 describes in detail the entries of optimisationDict, the basic dictionary

driving the adjoint code. Chapter 3 describes the entries to be added to fvSolution
while chapter 4 the ones to be added to fvSchemes. Chapter 5 describes entries related
to the adjoint to turbulence models, chapter 6 provides guidelines for defining the ad-
joint boundary conditions while chapter 7 explains the setup for deforming the mesh
during shape optimisation runs, including the setup of a volumetric B-splines mor-
pher. Chapter 8 describes the applications (solvers and utilities) used to solve the flow
(primal) and adjoint equations, compute the sensitivity derivatives and perform auto-
mated shape optimisation loops.
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Chapter 2

optimisationDict

optimisationDict is the main dictionary in which almost all information about the so-
lution of the primal and adjoint equations is set up. It is located in system and needs
to be present for practically all applications presented in section 8 to run. The various
sub-dictionaries and entries of optimisationDict are presented in detail in the sections
that follow.

2.1 optimisationManager

optimisationManager singleRun ;

The optimisationManager entry defines the mode of operation of the adjointOptimi-
sationFoam executable.

optimisationManager: (singleRun, steadyOptimisation)
singleRun is used to solve the primal and adjoint equations just once, without per-
forming an optimisation loop while steadyOptimisation is used when an automated
optimisation loop is targeted. Further details about the setup of the code in each of
these scenarios are given in sections 8.1.1.1 and 8.1.1.2.

2.2 primalSolvers

primalSolvers
{

p1
{

9
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act ive true ;
type incompressible ;
solver simple ;
useSolverNameForFields f a l s e ;
solutionControls
{

n I t e r s 3000;
residualControl
{

"p . * " 1 . e −8;
"U. * " 1 . e −8;

}
averaging
{

average true ;
s t a r t I t e r 1000;

}
}
fvOptions { }

}
}

The primalSolvers dictionary is where the solver(s) of the primal equations are de-
fined. One set of primal equations will be solved for each sub-dictionary within pri-
malSolvers. A situation in which more than one primal solvers must be used is when
tackling multi-point optimisation problems (e.g. minimizing airfoil drag in two differ-
ent farfield flow angles).

2.2.1 Entries within each primalSolver sub-dictionary

active: (true|false)
Whether the primal equations corresponding to this solver are going to be solved or
not.

type: (incompressible)
Type of the primal solver. Only one option valid for now.

solver: (simple, RASTurbulenceModel)
Solution algorithm used to solve the primal equations. simple will replicate the be-
haviour of simpleFoam while RASTurbulenceModel will solve the turbulence model
PDEs, as set-up in constant/turbulenceProperties, using constant U and phi fields.
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useSolverNameForFields:(true|false)
If set to true, all flow variable names related to this solver will be appended with the
solver name (e.g. “U” would become “Up1”). If this is the case, the entries in fvSolution
(solvers, relaxationFactors, etc) and fvSchemes (discretization schemes for grads, divs,
etc) have to appropriately be adapted manually. This flag should be set to true for
multi-point runs and, for convenience sake, should better be kept to false for single-
point runs. If set to true, boundary conditions will be read in the following way:

• If a file exists with the specific field name (e.g. “Up1”), boundary conditions will
be read from there.

• If not, the code will attempt to read the base field file (e.g. “U”). If this fails, the
code will exit with an appropriate error message.

Note: Boundary conditions that require field names (e.g. inletOutlet requires the “phi”
name, which defaults to “phi”) should be set appropriately.

2.2.1.1 solutionControls

solutionControls contains entries used to manage the solution process of the primal
equations. For the simple solver, among others, its entries include all entries that would
be read through system/fvSolution/SIMPLE if simpleFoam was ran instead of adjoin-
tOptimisationFoam.
Note: the equivalent entries in system/fvSolution/SIMPLE will be disregarded.

Additional entries include:

nIters
Maximum number of iterations when solving the primal equations.

nInitialIters optional, default=nIters
The number of primal iterations to be executed in the first optimisation cycle. Could
potentially be higher than nIters, since the primal equations will likely require more
iterations to converge in the first optimisation cycle than in the subsequent ones.

2.2.1.1.1 averaging

averaging is optional. It controls averaging of the primal fields during the solution of
the primal equations. This is mainly used to feed the adjoint equations with averaged
primal fields in cases a limit-cycle oscillation manifests during the primal solution (e.g.



12 CHAPTER 2. OPTIMISATIONDICT

solving a, practically, unsteady flow using a steady-state solver like simpleFoam).

average (true, false)
Whether to perform averaging or not. If set to true, all primal fields related to the solver
will be averaged (e.g. U, p, phi, turbulence model variables, etc). Averaged field names
consist of the original field name, appended by ’Mean’.

startIter
Starting iteration of the averaging process.

shapeOptimisation/motorBike

2.2.1.2 fvOptions

The fvOptions dict is optional. Source terms that are generally applied through the
system/fvOptions dict (e.g. MRFSource, explicitPorosityModel, etc) should be inserted
here.

2.3 adjointManagers

adjointManagers
{

am1
{

primalSolver p1 ;
operatingPointWeight 1 ;
adjointSolvers
{

as1
{

/ / choose adjoint s o l v e r
/ / −−−−−−−−−−−−−−−−−−−−−−
act ive true ;
type incompressible ;
solver adjointSimple ;
useSolverNameForFields f a l s e ;
computeSensitivities true ;
isConstraint f a l s e ;
/ / manage o b j e c t i v e s
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/ / −−−−−−−−−−−−−−−−−−
object ives
{

type incompressible ;
objectiveNames
{

losses
{

type PtLosses ;
weight 1 ;
patches ( I n l e t Outlet ) ;

}
}

}
/ / ATC treatment
/ / −−−−−−−−−−−−−−

ATCModel
{

ATCModel standard ;
extraConvection 0 ;
zeroATCPatchTypes ( ) ;
nSmooth 0 ;
maskType face Ce l l s ;

}
/ / solution control
/ / −−−−−−−−−−−−−−−−−−
solutionControls
{

n I t e r s 3000;
printMaxMags true ;
residualControl
{

"pa . * " 1 . e −7;
"Ua. * " 1 . e −7;

}
averaging
{

average true ;
s t a r t I t e r 1000;

}
}
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}
}

}
}

One adjointManager should be defined for each primal solver present in the primal-
Solvers dictionary (section 2.2). Each adjointManager is responsible for the adjoint
PDEs to be solved at the corresponding operating point.

2.3.1 Entries within each adjointManager sub-dictionary

primalSolver
The name of the primal solver dict (section 2.2) corresponding to the current operating
point.

operatingPointWeight Defaults to 1
When having multiple objective functions defined across many operating points, they
have to be concatenated into a single one using appropriate weights, i.e. J =∑

i w op
i J op

i ,
where J is the concatenated objective function summing contributions from all oper-
ating points, J op

i is the objective of i -th operating point (see also section 2.3.1.1.1 and

eq. 2.1) and w op
i the corresponding weight; operatingPointWeight corresponds to w op

i .

adjointSolvers
A list of dictionaries, setting up the adjoint solvers to be used in this operating point.
One set of adjoint PDEs will be solved for each adjoint solver and one correspond-
ing set of sensitivity derivatives will be computed. Use multiple adjointSolvers only if
sensitivities of multiple objectives must be computed separately from each other. If
the weighted sum of different objectives is of interest, a single adjointSolver should be
used and the weights of each objective should be defined in the objectives dictionary,
section 2.3.1.1.1.
Note: The names of the sub-dictionaries within adjointSolvers should be unique across
all operating points (i.e. across all adjointManagers).

2.3.1.1 Entries within each adjoinSolvers sub-dictionary

active:(true|false)
Whether the adjoint equations are going to be solved for this adjointSolver.

type: (incompressible)
Type of the adjoint solver. Only one option valid for now.
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type: (adjointSimple)
Solution algorithm used to solve the adjoint equations. Only the adjointSimple option
is available for now.

useSolverNameForFields: (true|false)
The equivalent of the useSolverNameForFields in the primalSolver setup, section 2.2.1.
Should be set to true if more than one adjointSolvers are present.

computeSensitivities: (true|false)
Whether to compute sensitivity derivatives or not, after solving the adjoint equations.

isConstraint: (true|false)
Whether the objective function of this solver will act as a constraint. See also section
2.4.3 for the appropriate updatheMethods to be used in the presence of constraints.

2.3.1.1.1 objectives

type: (incompressible)
Type of objective functions to be constructed. Only one option is valid for the moment.

objectiveNames
A list of dictionaries corresponding to the objective functions to be minimized. Each
objective function value is written in a file located in the optimisation folder, under ob-
jective/TimeName/objectiveName+AdjointSolverName. One set of adjoint equations is
solved for each adjointSolver, minimizing the weighted sum of the objectives declared
in objectiveNames, i.e.

J op =∑
i

wi Ji (2.1)

Note: The names in objectiveNames should be unique across all adjointManagers points
and adjointSolvers.

Entries in each dictionary under objectiveNames

The entries in each dictionary under objectiveNames depend on the objective type. The
two mandatory entries are

type (force, forceTarget, moment, PtLosses, partialVolume)
The type of the objective to be minimized.
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weight
Objective function weight (see also eq. 2.1).

A typical setup and a short description for each of the available objectives follows

force

J =
∫

SW
ρ(−τi j n j +pni )ri dS

1
2ρAU 2∞

(2.2)

where τi j are the components of the stress tensor, p is the pressure divided by the
constant density ρ and n the unit normal vector. Vector r defines the direction in which
the force vector should be projected (e.g. parallel to the farfield velocity to minimize
drag). In what follows, repeated indices imply summation. In addition, SW are the
wall patches on which force is defined, A is the frontal area and U∞ the farfield velocity
magnitude.

A typical force dictionary would read

drag
{

weight 1 . ;
type force ;
patches ( " wall . * " wallGroup ) ; / / wild cards , group names , e t c
direction (0.99939 0.03489 0) ;
Aref 2 . ;
rhoInf 1 . 2 2 5 ;
UInf 1 . ;

}

Note: Recall that the code assumes objectives are going to be minimized. If the maxi-
mization of a force is targeted, use the opposite force direction vector.

sensitivityMaps/naca0012/laminar/drag

forceTarget

J = F −Ft ar (2.3)

where F is the force projected to a certain direction, as defined in the force objective,
and Ft ar a target force value.

The forceTarget dictionary is the same as that of of the force objective, with an ad-
ditional entry specifying the target force value
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drag
{

weight 1 . ;
type force ;
patches ( " wall . * " wallGroup ) ; / / wild cards , group names , e t c
direction (0.99939 0.03489 0) ;
Aref 2 . ;
rhoInf 1 . 2 2 5 ;
UInf 1 . ;
t a r g e t 0 . 4 5 ;

}

Note: The forceTarget objective should only be used as a constraint (see also the isCon-
straint entry in section 2.3.1.1).

moment

J =
∫

SW
ρr M

i ei j k (x j −xC
j )(−τkl nl +pnk )dS

1
2ρAlU 2∞

(2.4)

where rM is the moment direction to be minimized, x the position vector of each bound-
ary face, xC the position vector of the rotation center, l the reference length and ei j k the
permutation symbol. The rest of the symbols coincide with those defined in force.

A typical moment dictionary would read

moment
{

weight 1 . ;
type moment;
patches ( " wall . * " wallGroup ) ;
direct ion (0 0 1) ;
rotationCenter (0 0 0) ;
Aref 1 . ;
lRef 1 . ;
rhoInf 1 . 2 2 5 ;
UInf 6 . ;

} ;

sensitivityMaps/naca0012/laminar/moment
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PtLosses

J =−
∫

SI ,O

(
p + 1

2
v2

k

)
vi ni dS (2.5)

where S I and SO are the inlet and outlet patches, respectively. The inlet and outlet
patches can be prescribed in the patches entry.

losses
{

weight 1 . ;
type PtLosses ;
patches ( I n l e t Outlet ) ;

} ;

Note: In case the patches entry is missing, the code will attempt to identify the in-
let/outlet patches automatically, by checking the mass flow from each mesh patch.
This identification happens before the flow equations are solved, so the flow initializa-
tion might affect it.

sensitivityMaps/sbend/laminar

partialVolume

J = V −Vi ni t

Vi ni t
(2.6a)

V =−1

3

∫
SW

xk nk dS (2.6b)

where V is the volume enclosed by the patches defining SW and Vi ni t is the volume of
the initial geometry, defined in the same way.

losses
{

weight 1 . ;
type partialVolume ;
patches ( pressure suction ) ;

} ;

Note: The partialVolume objective should only be used as a constraint (see also the
isConstraint entry in section 2.3.1.1).
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shapeOptimisation/naca0012/lift/opt/constraintProjection

nutSqr

J =
∫
Ω′
ν2

t dΩ (2.7)

whereΩ′ is the part of the computational domain in which the objective is defined and
νt is the turbulent viscosity. The objective has been used in the past to qualitatively
quantify and minimize noise [8].

noise
{

weight 1 . ;
type nutSqr ;
zones ( zone1 zone2 . . . ) ;

} ;

zones are the cellZones definingΩ′.

shapeOptimisation/sbend/turbulent/SA/opt/nutSqr

flowRate

J =
∫

SO

vi ni dS (2.8)

where SO are the patches used to define the objective function (usually one or more
outlets).

flowRate
{

weight −1; / / maximize
type flowRate ;
patches ( outlet1 ) ;

}

Note: You can use a negative weight if you want to maxinize your objective function.
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shapeOptimisation/fork-uneven/flowRate

flowRatePartition

J = 1

2

L∑
l=1

(
tl −

∫
SOl

vi ni dS

mI

)2

mI =−
∫

SI

vi ni dS (2.9)

defines a metric that quantifies the distribution of the inlet flow rate (mI ) to specific
outlets (SOl ) with target percentages (tl , l ∈ [1,L], where L is the number of specified
outlet patches).

p a r t i t i o n
{

weight 1 ;
type flowRatePartit ion ;
inletPatches ( i n l e t ) ; / / used to compute m_I
outletPatches ( outlet1 outlet2 ) ;
/ / Optional entry . I f abscent , i n l e t flow rate w i l l
/ / be partit ioned equally between o u t l e t s
/ / targetPercentages ( 0 . 5 0 . 5 ) ;

}

shapeOptimisation/fork-uneven/flowRatePartition

uniformityPatch

J = 1

2

∫
S(vi − vi )2dS∫

S dS

vi =
∫

S vi dS∫
S dS

(2.10)

is a uniformity index to be minimized, quantifying the variance of the velocity vector
vi w.r.t. the spatially averaged velocity vi , over prescribed surfaces (patches) S.

uniformity
{

weight 1 ;
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type uniformityPatch ;
patches ( outlet2 ) ;

}

Note: In case the patches entry is missing, the code will attempt to identify the outlet
patches automatically, by checking the volume flow-rate from each mesh patch. This
identification happens before the flow equations are solved, so the flow initialization
might affect it.

shapeOptimisation/fork-uneven/uniformityPatch

uniformityCellZone

J = 1

2

∫
Ω′(vi − vi )2dΩ∫ ′

ΩdΩ

vi =
∫ ′
Ω vi dΩ∫ ′
ΩdΩ

(2.11)

similar to uniformityPatch, but this time defined over parts of the interior of the com-
putational domain,Ω′, set through cellZones.

uniformity
{

weight 1 ;
type uniformityCellZone ;
zones ( zone ) ;

}

shapeOptimisation/sbend/laminar/opt/unconstrained/uniformityCellZone

powerDissipation

J = 1

2

∫
Ω′

(ν+νt )

(
∂vi

∂x j
+ ∂v j

∂xi

)2

dΩ (2.12)

is the fluid power that is dissipated within part of the computation domain,Ω′, defined
through cellZones.
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powerDissipation
{

weight 1 ;
type powerDissipation ;
zones ( zone ) ;

}

Note: In the absence of stresses on the "inlets" and "outlets" of the cellZones used to
define the objective function, the latter is equivalent to volume flow-rate weighted to-
tal pressue losses (see PtLosses), [6].

shapeOptimisation/sbend/turbulent/SA/opt/powerDissipation

2.3.1.1.2 ATCModel

The ATCModel dict provides the available options for the so-called Adjoint Transpose
Convection (ATC) term, existing in the adjoint momentum equations. The ATC is nu-
merically stiff and can often cause convergence difficulties for the adjoint equations.
The ATCModel dict provides some options to smooth it in order to facilitate conver-
gence in industrial cases. Its entries read:

ATCModel (standard, UaGradU, cancel)

Form of the ATC term. The standard option computes it as u j
∂v j

∂xi
, where v and u are the

primal and adjoint velocity vectors, respectively. It is formulated by differentiating the
non-conservative form of the convection term in the primal momentum equations.

The UaGradU option computes the ATC term as −v j
∂u j

∂xi
and is formulated by differen-

tiating the conservative form of the convection term in the primal momentum equa-
tions. The cancel option excludes the ATC term from the adjoint momentum equations
during the solution of the adjoint PDEs (at the same time, of course, loosing some ac-
curacy depending on the case). In order of decreasing robustness, the options can be
given as (cancel, standard, UaGradU).

extraConvection Defaults to 0.
In order to facilitate convergence, add and subtract the adjoint convection term this
many times, using slightly different discretization schemes in order to add numerical
dissipation.

zeroATCPatchTypes Defaults to an empty wordList.
A wordList. Zero the ATC term next to patches of the provided types. No zeroing will be
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conducted if the wordList is empty.

zeroATCZones Defaults to an empty wordList.
A wordList. Similar to zeroATCPatchTypes but works on the provided cellZones.

nSmooth Defaults to 0.
Propagate the smoothing of the ATC term, applied to the cells collected through ze-
roATCPatchTypes and zeroATCZones, by using a Laplacian-like filter nSmooth times.

maskType (faceCells, pointCells)
How will the cells next to the zeroATCPatchTypes will be chosen for smoothing the ATC
term. If faceCells is used, every cell having a face in the zeroATCPatchTypes boundaries
will be chosen whereas if pointCells is used, every cell that has a point in the zeroATC-
PatchTypes will be used.

sensitivityMaps/naca0012/turbulent/liftFullSetup

2.3.1.1.3 solutionControls

solutionControls has entries used to manage the solution process of the adjoint equa-
tions. Its entries are the same as the ones in the solutionControls dictionary of the
primalSolvers dict, section 2.2.1.1. Averaging can be applied to the adjoint fields, in a
similar manner used for the primal ones, section 2.2.1.1.1. In this case, the mean ad-
joint fields will be used to compute the sensitivity derivatives.

Additional entries read:

printMaxMags: (true|false)
Whether to print the maximum values of the adjoint fields to the log file. These can be
useful indicators of the simulation stability.

2.4 optimisation

The optimisation dict is optional and should be present only when an automated op-
timisation loop is to be executed or sensitivity derivatives should be computed. Its
subDicts follow:

2.4.1 sensitivities
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s e n s i t i v i t i e s
{

type surfacePoints ;
patches ( pressure suction ) ;
options . . .

}

The sensitivities dict is where the setup for the computation of sensitivity derivatives
is provided. Sensitivities will be computed after all adjoint PDEs are solved, for the
adjoint solvers for which computeSensitivities is set to true, section 2.3.1.1. Only two
entries are mandatory and based on them, usually additional entries or dictionaries
are required. The mandatory entries are

sensitivityType
(
surface
surfacePoints
volumetricBSplines
volumetricBSplinesFI
Bezier
BezierFI
multiple
)

patches
On which patches to compute sensitivities. Wildcards and group names allowed. Even
for sensitivity computations that do not depend on surface integrals (e.g. sensitivi-
tyVolBSplinesFI or sensitivityBezierFI), the patches entry should be completed correctly
since the so-called direct sensitivities will be computed there.

2.4.1.1 surface

Used to compute the so-called sensitivity maps, i.e. the derivative of the objective func-
tion w.r.t. the normal displacement of the boundary wall faces. Upon computation, a
volScalarField named faceSensNormal, appended with the name of the adjointSolver,
will be written at the current time-step folder for each adjointSolver declared, section
2.3.1. Keeping in mind the convention for the surface normal unit vector, facing from
the fluid to the solid boundaries, positive sensitivities indicate a movement opposite
to the geometry normal (“outwards” or “inwards”, for external or internal aerodynam-
ics, respectively); negative sensitivities indicate a movement aligned to the geometry
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normal (“inwards” or “outwards”, for external or internal aerodynamics, respectively)
to minimize the given objective function, fig. 2.1

A typical setup reads

type surface ;
patches ( " wall . * " ) ;
includeSurfaceArea true ;
includeObjectiveContribution true ;
includeMeshMovement true ;
adjointMeshMovementSolver
{

i t e r s 300;
tolerance 1 . e −7;

}
/ / E n tr i e s r e l a t e d to s e n s i t i v i t y smoothing
smoothSensit ivit ies true ;
meanRadiusMultiplier 10;
/ / radius 1 ;

includeSurfaceArea (true|false)
Whether to include the local face area in the sensitivity values or not. Should be set to
true if the actual impact of a face movement is required and the mesh resolution im-
pact should be taken into consideration (i.e. a unit movement of a face with a large area
will cause a relatively big shape change and, hence, will have a large sensitivity value).
On the contrary, if a normalized sensitivity distribution is required to get an overview
of the surface areas with high optimisation potential, this option should be set to false.
In this case, the sensitivity value should be interpreted as “what will be the change in
the objective, if a node is moved in such a way that the change in the local face area is
unitary”.

includeObjectiveContribution (true|false)
Certain objectives give the so-called direct contributions to the sensitivities (for in-
stance, changes in the normal surface vector in drag optimisation). This flag deter-
mines whether these contributions will be computed or not.

includeMeshMovement (true|false)
Whether to take into consideration the sensitivity contribution arising by the adjoint
to the grid displacement scheme or not. If set to false, the so-called Surface Integrals
(SI) formulation will be used, whereas if set to true, the so-called Enhanced Surface
Integrals (E-SI) approach will be employed, [3]. The latter assumes that, after updating
the geometry, the grid will be displaced using a set of Laplace-based PDEs and solves
the adjoint to that problem. In order to do so, boundary conditions for the adjoint
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to the grid displacement variable (a volVectorField named ma) should be set. These
should be of zero fixedValue type for all boundaries, expect the constrained (i.e. cyclic,
processor, symmetry, etc) ones. The ma field is generated automatically by the code,
unless read from the current time-step folder. In addition, a solver for ma should be
added to fvSolution and a discretization scheme for laplacian(ma) should be added in
fvSchemes/laplacianSchemes, unless a default one is present. No relaxation is required
for the solution of this equation. It is highly recommended to switch the includeMesh-
Movement to true in order to increase the accuracy of the computed sensitivities.

An additional, optional dictionary named adjointMeshMovementSolver can be pro-
vided to control the convergence of the adjoint grid displacement PDEs. If not pro-
vided, the following default values will be used. Its entries read

adjointMeshMovementSolver

iters 1000
Maximum number of iterations for the adjoint grid displacement solver.

tolerance 1.e-06
Residual to be reached before considering the adjoint grid displacement PDEs as
converged.

For cases in which the Spalart–Allmaras turbulence model is differentiated (chap-
ter 5), additional entries may be supplied to the sensitivities dict. These read

includeDistance (true|false)
Whether to solve the adjoint to the eikonal equation or not, [7]; only for cases including
the adjoint to the Spalart–Allmaras turbulence model, chapter 5. If set to true, bound-
ary conditions for the adjoint distance field (a volScalarField named da) should be set.
These should be of zero fixedValue type for inlet and outlet boundaries and zeroGra-
dient ones for walls. The da field is generated automatically by the code, unless read
from the current time-step folder. In addition, a solver for da should be added to fv-
Solution, along with a relaxation factor for the da equation. A discretization scheme
for div(-yPhi,da) should be added in fvSchemes/divSchemes. If includeDistance is set to
true, an additional optional dictionary named adjointEikonalSolver can be provided to
control the convergence of the adjoint eikonal PDE. A typical example reads

includeDistance true ;
adjointEikonalSolver
{

i t e r s 300;
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tolerance 1 . e −7;
epsilon 0 . 1 ;

}

The iters and tolerance entries are identical to the ones in adjointMeshMovement-
Solver, section 2.4.1.1. The epsilon entry (default value 0.1) should be the same as the
one used in fvSchemes, in the wallDist/advectionDiffusionCoeffs dictionary, if method
advectionDiffusion is chosen. For cases where stability issues emerge, a higher value
can be used.

Note: it is important NOT to use bounded divergence schemes for the convection term
of the adjoint eikonal equation, since yPhi is not conservative.

sensitivityMaps/naca0012/turbulent/liftFullSetup

smoothSensitivities (true|false)
Whether to smooth the computed sensitivity map. When computing sensitivity maps
on surface meshes generated from industrial geometries, the outcome might appear
noisy, especially if a volume-to-surface approach is used for meshing, e.g. as used by
snappyHexMesh. Even though the sensitivity map is technically correct, the noisy pat-
terns that appear might make the extraction of useful information challenging. Smooth-
ing can be used to facilitate the interpretation of the sensitivity map in such cases. The
sensitivity map is smoothed through a Laplace-Beltrami filter of the form

−R2∂
2m̃

∂x2
j

+m̃ = m (2.13)

where m is the original sensitity map, m̃ the smoothed one and R the smoothing ra-
dius. Eq. 2.13 is solved on the part of the surface mesh defined by the patches on
which the sensitivity map is computed, using the finiteArea infrastructure. If a finite
area mesh is provided under constant, it will be used; otherwise it is created on-the-fly
based on either an faMeshDefinition dictionary in the system directory, or constructed
internally based on the sensitivity patches. An indicative example is given in fig. 2.2.

meanRadiusMultiplier (10)
By default, the smoothing radius R in eq. (2.13) is computed as a multiple of the average
size of the boundary mesh elements; this multiple is given by meanRadiusMultiplier
which defaults to 10. Alternatively, the radius can be provided directly by the radius
entry (value in meters).
Note: From an optimisation point of view, the smoothing of eq. (2.13) can alternatively
be seen as computing the sensitivity derivatives δJ/δbi of the objective function J w.r.t.
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a different set of design variables bi , i ∈ [1, N ], defined as

xi = xi ni t
i + b̃i

b̃i −R2∂
2b̃i

∂x2
j

= bi

where xi are the coordinates of the updated geometry, xi ni t
i the ones of the initial ge-

ometry and b̃i a smooth displacement field. In other words, no loss of accuracy is
incurred by the smoothing; instead, sensitivities are computed w.r.t. a different set of
design variables.

sensitivityMaps/motorBike

2.4.1.2 surfacePoints

Same as surface, section 2.4.1.1, but sensitivities are computed w.r.t. the normal dis-
placement of boundary points, not faces. When sensitivity maps are of interest, this
option should be preferred to surface since some of the terms included in the com-
putations (e.g. variation in the normal vector) are better posed when differentiating
w.r.t. points. Upon computation, a pointScalarField named pointSensNormal, appended
with the name of the adjointSolver, will be written at the current time-step folder for
each adjointSolver declared, section 2.3.1. Entries discussed in section 2.4.1.1 are valid
here as well, with the exception of the ones corresponding to sensitivity smoothing.

2.4.1.3 volumetricBSplines

This option computes sensitivity derivatives w.r.t. the control points of a volumetric B-
splines morpher. The theoretical background for the latter can be found in [8] whereas
its OpenFOAM setup is explained in chapter 7. Sensitivities are computed using the
chain rule, i.e.

δJ

δbn
= δJ

δxi

δxi

δbn
(2.14)

when δJ/δxi is the sensitivity map (see section 2.4.1.1) and δxi /δbn is computed an-
alytically on the surface, by differentiating the volumetric B-splines morpher. The de-
fault settings provided in section 2.4.1.1 are used to compute the sensitivity map; these
can be altered through the optional surfaceSensitivities sub-dictionary.

type volumetricBSplines ;
patches ( lower upper ) ;
surfaceSensitivities
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{
/ / the options l i s t e d in s e c t i o n 2.4.1.1
/ / can be overridden here

}

It should be noted that since the E-SI approach for computing sensitivity maps as-
sumes a grid displacement model of a set of Laplace-based PDEs but the volumetric
B-splines morpher actually moves the mesh using an analytic/algebraic formula, slight
inconsistencies might emerge in the computed sensitivities. For optimisation runs in
which the maximum sensitivity accuracy is required, the volumetricBSplinesFI option
(section 2.4.1.4) is proposed as a more expensive but more accurate alternative. Upon
computation, the sensitivity derivatives are written in a file named volumetricBSplines,
appended by the adjointSolver name and the time-step value and located in the opti-
misation/volumetricBSplinesDerivatives folder.

shapeOptimisation/sbend/laminar/primalAdjoint/

2.4.1.4 volumetricBSplinesFI

This options computes sensitivities of the objective function w.r.t. the control points
of a volumetric B-splines morpher (see chapter 7) using the Field Integrals (FI), [3],
approach. No additional entry is required apart from the mandatory ones, i.e.

type volumetricBSplinesFI ;
patches ( pressure suction ) ;

Note that depending on the case (large number of CFD grid points inside the pa-
rameterized domain, large number of control points and high basis degree), comput-
ing sensitivities with this approach could be time consuming. Upon computation, the
sensitivity derivatives are written in a file named volumetricBSplinesFI, appended by
the adjointSolver name and the time-step value and located in the optimisation/volu-
metricBSplinesFIDerivatives folder.

shapeOptimisation/sbend/laminar/opt/unconstrained/SD

2.4.1.5 Bezier

Sensitivities computed w.r.t. the control points of a Bézier–Bernstein curve, using the
chain rule and either the SI or the E-SI approach, depending on the setup of the sur-
faceSensitivities (see also sections 2.4.1.1 and 2.4.1.3). A series of pointTensorFields
named d xi d X j _0,d xi d X j _1, . . .d xi d X j _n should be present in the time-step folder
to obtain the parameterization information (practically, the Bézier–Bernstein basis func-
tions for each parameterized surface point and each control point).
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type Bezier ;
patches ( lower upper ) ;
surfaceSensitivities
{

/ / the options l i s t e d in s e c t i o n 2.4.1.1
/ / can be overridden here

}

An additional dictionary is required, placed as a direct subDict of optimisationDict,
defining the number of control points and which of these have a confined movement
in each direction.

Bezier
{

nBezier 16;
confineXmovement
(

true f a l s e f a l s e f a l s e f a l s e f a l s e f a l s e true
true f a l s e f a l s e f a l s e f a l s e f a l s e f a l s e true

) ;
confineYmovement
(

true f a l s e f a l s e f a l s e f a l s e f a l s e f a l s e true
true f a l s e f a l s e f a l s e f a l s e f a l s e f a l s e true

) ;
confineZmovement
(

true true true true true true true true
true true true true true true true true

) ;
}

Upon computation, the sensitivity derivatives are written in a file named Bezier, ap-
pended by the adjointSolver name and the time-step value and located in the BezierDeriva-
tives folder. Sensitivities w.r.t. the x coordinates of all control points are written first,
followed by those w.r.t the y and z coordinates.

sbend/laminar/primalAdjoint
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2.4.1.6 BezierFI

Sensitivities computed w.r.t. the control points of a Bézier–Bernstein curve, utilizing
the FI approach. A vectorial Laplace equation needs to be solved for each design vari-
able, to propagate the parameterization information given in the d xi d X j _i files (see
also section 2.4.1.5) to the interior mesh. The maximum number of iterations and con-
vergence criterion for these PDEs are read from the optional dxdbSolver subDict; if not
provided, the default values given below will be used.

type BezierFI ;
patches ( pressure suction ) ;
dxdbSolver
{

iters 100;
tolerance 1.e-11;

}

A volVectorField named mTilda is used for this task with zero fixedValue bound-
ary conditions for all patches The mTilda field is generated automatically by the code,
unless read from the current time-step folder. In addition, a solver for m should be
added in fvSolution and a discretization scheme for laplacian(m) should be added
in fvSchemes/laplacianSchemes, unless a default one is present. No relaxation is re-
quired for the solution of these equations. Upon computation, the sensitivity deriva-
tives are written in a file named BezierFI, appended by the adjointSolver name and
the time-step value and located in the optimisation/BezierFIDerivatives folder. Sensi-
tivities w.r.t. the x coordinates of all control points are written first, followed by those
w.r.t the y and z coordinates.

shapeOptimisation/naca0012/drag/primalAdjoint

2.4.1.7 multiple

s e n s i t i v i t i e s
{

type multiple ;
patches ( lower upper ) ;
sensTypes
{

faces
{

type surface ;
patches ( lower upper ) ;
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}
points
{

type surfacePoints ;
patches ( lower upper ) ;

}
}

}

Provides a framework for computing multiple types of sensitivity derivatives. Sensitiv-
ities will be computed for all sub-dictionaries in sensTypes.

shapeOptimisation/sbend/laminar/primalAdjoint

2.4.2 optimisationType

optimisationType
{

type shapeOptimisation ;
writeEachMesh true ;

}

optimisationType is a subDict that should be present if optimisationManager is set
to steadyOptimisation (see section 2.1) and is directly placed under optimisation. Its
only mandatory entry is

optimisationType (shapeOptimisation)
defines the type of adjoint-based optimisation to be conducted. Only shapeOptimisa-
tion is available at the moment.

For shapeOptimisation runs, an additional optional entry can be supplied:

writeEachMesh (true|false)
Whether to write the meshes produced in each optimisation cycle or not, independent
of whether the flow fields are going to be written in this optimisation cycle.

2.4.3 updateMethod
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updateMethod
{

method steepestDescent ;
/ / eta 1 ; / / optional
lineSearch
{

type ArmijoConditions;
}

}

The method used to update the design variables is defined in this dictionary. All
methods update the design variables using a scheme of the form

bnew
i = bol d

i +ηpi (2.15)

where b are the design variables, p the update direction and η a user-defined (either
explicitly or implicitly, see next entries) step. The dictionary entries read

method (steepestDescent, conjugateGradient, BFGS, DBFGS, LBFGS, SR1, constraint-
Projection, SQP)
Which method to use to update the design variables. Only the constraintProjection and
SQP methods can handle constraints.

A short description of the entries required by each update method follows.

2.4.3.1 steepestDescent

The simplest and most robust (but also, providing the slowest convergence) method to
update the design variables. The update vector is computed as

pi =− δJ

δbi
(2.16)

No additional dictionary entries are required.

2.4.3.2 conjugateGradient

The Conjugate Gradient method, [1], for updating design variables. Significantly faster
than steepestDescent but can still tolerate discrepancies in the sensitivities, in cases
where some balance should be struck between accuracy and stability. An additional
dictionary might be provided
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conjugateGradient
{

betaType FletcherReeves ;
activeDesignVariables ( 1 2 5 7 ....);

}

betaType (FletcherReeves, PolakRibiere, PolakRibiereRestarted)
An optional entry choosing the formula to update the β variable in Conjugate Gradi-
ent, [5]. Defaults to FletcherReeves which has proved to be the most robust and should
be preferred.

activeDesignVariables
A labelList informing the method which design variables are allowed to be updated.
If no labelList is found, the method will update all design variables, except those kept
fixed by the parameterization itself (see also section 2.4.1.5 and 7.1.1.1).

shapeOptimisation/motorBike

2.4.3.3 BFGS

method BFGS ;
BFGS
{

nSteepestDescent 1 ;
etaHessian 1 ;
scaleFirstHessian true ;
activeDesignVariables ( 1 2 5 7 . . . . ) ;

}

The quasi-Newton BFGS method [5]. The update is computed through

δ2 J̃

δbiδb j
p j =−ηH

δJ

δbi
(2.17)

where δ2 J̃
δbiδb j

is an approximation of the objective function Hessian and ηH is a user-

defined constant. BFGS and its limited memory variant (see section 2.4.3.4) are prob-
ably the most widely used methods to update the design variables in general optimi-
sation problems. Their convergence is significantly faster than conjugateGradient or
steepestDescent, however they require highly accurate sensitivity derivatives. In cases
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that the primal and adjoint equations are converging without difficulties, (L)-BFGS
should be the preferred methods; otherwise, conjugateGradient should be employed.
The convergence rates of BFGS and steepestDescent can be compared by running the
cases under

shapeOptimisation/sbend/laminar/opt/unconstrained/SD
shapeOptimisation/sbend/laminar/opt/unconstrained/BFGS

nSteepestDescent 1
Number of steepest descent updates conducted before applying the BFGS approach.
Should be at least one. Could be more in stiff problems. The η value defined (explicitly
or implicitly) in updateMethod will be used for these updates.

etaHessian 1
In Hessian-based methods, the η value should be theoretically 1. Since, however, BFGS
is a quasi-Newton method an ηH value should be provided. It is usually in the range of
[0.5-1].

scaleFirstHessian (true|false)
Whether to scale the first Hessian matrix computed using a correction proposed in [5].
Usually improves the convergence speed of the method.

activeDesignVariables
Same as the corresponding entry in section 2.4.3.2.

2.4.3.4 LBFGS

method LBFGS ;
LBFGS
{

nSteepestDescent 1 ;
etaHessian 1 ;
nPrevSteps 10;
activeDesignVariables ( 1 2 5 7 . . . . ) ;

}

The limited memory variant of the BFGS quasi-Newton method [4]. LBFGS is closely
related to BFGS, however, instead of approximating and storing the (inverse) Hessian
matrix, only a few vectors are stored that represent it implicitly. Hence, LBFGS is usu-
ally employed when the number of design variables is too large to allow storing the
Hessian matrix. LBFGS has the same (optional) entries as BFGS (with the exception of
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scaleFirstHessian) and includes one more

nPrevSteps 10
Number of vectors used to implicitly retrive the approximation to the Hessian matrix.
A relatively small number, usually around 10, is enough for most problems.

2.4.3.5 SR1

method SR1 ;
SR1
{

nSteepestDescent 1 ;
etaHessian 1 ;
activeDesignVariables ( 1 2 5 7 . . . . ) ;

}

The Symmetric Rank One (SR1) quasi Newton update method. Similar convergence
characteristics as BFGS and identical optional entries, with the exception of scaleFirs-
tHessian.

2.4.3.6 constraintProjection

method constraintProjection ;
constraintProjection
{

useCorrection true ;
}

constraintProjection is an updateMethod that supports the handling of equality con-
straints, [10] . In particular, the update direction is that of steepest descent, if the part
that is normal to all constraint isolines is subtracted. constraintProjection is ideal for
tackling (almost) linear constraint functions throughout the optimisation. One op-
tional entry can be provided

useCorrection (true|false)
Whether or not to use a correction taking into consideration the non-linearity of the
constraint function w.r.t. the design variables. It should be noted that if useCorrection
is set to false, constraintProjection can be used to only keep the value of the constraint
function the same as in the first optimisation cycle and not to obtain a user-defined
target value.
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shapeOptimisation/naca0012/lift/opt/constraintProjection

2.4.3.7 SQP

method SQP;
SQP
{

etaHessian 0 . 8 ;
nSteepestDescent 1 ;
scaleFirstHessian true ;

}

SQP implements the Sequential Quadratic Programming method for updating the
design variables in the presence of equality constraints, [5]. It attempts to iteratively
satisfy the Karush-Kuhn-Tucker (KKT) conditions. The necessary Hessian matrix is
approximated using BFGS and, hence, its optional entries are the same as the ones
described in section 2.4.3.3. SQP, like BFGS for unconstrained optimisation problems,
exhibits a very fast converge but requires a high accuracy of the sensitivity derivatives
(see also comments in 2.4.3.3).

shapeOptimisation/sbend/laminar/opt/constrained/SQP

■
The rest of the (optional) entries in the updateMethod dictionary read

eta
If an η value (see eq. (2.15)) is manually set here, it will be used for the optimisation
loop. Otherwise, an η value will be computed based on the entries defined in mesh-
Movement, see section 2.4.4.

lineSearch
Line search methods can be used to adjust the eta value from one optimisation cycle
to the next. Each type of line search method attempts to find an eta value that satisfies
a certain kind of conditions (see [5] for more details); if these conditions are not met,
the last update is undone and the previously computed p direction (see eq. (2.15)) is
multiplied with a new eta value. Hence, line search methods can be seen as executing
an inner “optimisation loop” identifying an appropriate step value within each optimi-
sation cycle. Their use is optional; if none is provided (i.e. the lineSearch dictionary is
missing), the initial eta value will be maintained for all optimisation cycles. Additional
entries in the lineSearch dictionary read
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l ineSearch
{

type ArmijoConditions ;
minStep 0.3;
maxIters 4;
c1 1.e-04;
ratio 0.7;

}

type (ArmijoConditions, none)
The type entry defines what kind of condition should be met for accepting the current
eta value. ArmijoConditions is the only available option at the moment and, according
to it, the following inequality should hold in order to accept the current eta value

φ(b+ηs) ≤φ(b)+ c1ηD(φ(b);s), (2.18)

where D(φ(b);s) is the directional derivative of φ w.r.t. b in the direction of s and φ is
the l1 merit function defined as [5]

φ= J +µ
M∑

i=1
|ei | (2.19)

µ= max(|λi |), i ∈ [1, M ]

In eq. (2.18), the default value of c1 is 10−4 as suggested in [5] for quasi-Newton ap-
proaches computing s. The initial step is tested and if eq. (2.18) is not satisfied, it is
successively reduced by a factor of ratio for a maximum of maxIters times and the pri-
mal equations are solved anew. In eq. (2.19), λi are the Lagrange multipliers in case
SQP is used as the updateMethod and ei , i ∈ [1, M ] are the M constraint values; if no
constraint is present, µ= 0. minStep prevents the eta value from being reduced below
a certain threshold. Assigning type to none is the equivalent of excluding the lineSearch
dictionary altogether.

shapeOptimisation/motorBike

2.4.4 meshMovement

meshMovement
{

type volumetricBSplines ;
maxAllowedDisplacement 1 . e −2;
writeMeshQualityMetrics f a l s e ;

}
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meshMovement is a subDict of the optimisationDict and should be present when
the optimisationManager is set to steadyOptimisation and optimisationType is set to
shapeOptimisation. It provides information about how to translate the update of the
design variables into a mesh displacement (boundary and interior) in each optimisa-
tion cycle of a shape optimisation loop.

type
(
volumetricBSplines
volumetricBSplinesExternalMotionSolver
Bezier
)
Each option is analyzed in the sections that follow.

maxAllowedDisplacement
Provides the maximum boundary displacement to be imposed at the first optimisation
cycle. If η is explicitly defined in optimisationMethod, section 2.4.3, this entry will be
ignored. Otherwise, the η value will be computed based on the maxAllowedDisplace-
ment value provided here.

writeMeshQualityMetrics (true|false)
Writes mesh quality metrics, after each mesh update, in fields for visualization pur-
poses.

2.4.4.1 volumetricBSplines

Used to deform the boundary and the interior of the mesh using a volumetric B-splines mor-
pher, the specifics of which are described in section 7.1.

shapeOptimisation/sbend/laminar/opt/unconstrained/BFGS

2.4.4.2 volumetricBSplinesExternalMotionSolver

Similar to volumetricBSplines, section 2.4.4.1, but this option will use the volumetric
B-splines morpher to displace only the boundary while the mesh displacement will be
propagated to the interior using an alternative grid displacement model defined in dy-
namicMeshDict. Since the volumetric B-splines morpher has proved very robust in a
number of industrial applications, using volumetricBSplines is preferred to volumet-
ricBSplinesExternalMotionSolver. This option is provided in the sake of completeness.
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2.4.4.3 Bezier

Used to deform the mesh by moving parameterized Bézier–Bernstein surfaces and
propagating the movement to the interior mesh by using a grid displacement model
defined in dynamicMeshDict. The Bezier dict mentioned in section 2.4.1.5 needs to be
present for this operation as well.
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Figure 2.1: Drag sensitivity map computed on the surface of the DrivAer car model.
Blue areas should be moved according to the surface normal (“inwards”) to reduce
drag while red areas should be moved in the opposite direction.

Figure 2.2: Drag sensitivity map computed on the surface of the motorbike (tutorial
under sensitivityMaps/motorBike). Blue areas should be moved according to the sur-
face normal (“inwards”) to reduce drag while red areas should be moved in the oppo-
site direction. The four subfigures give the smoothed sensitivity map, computed with
a progressively larger sensitivity radius.
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Chapter 3

fvSolution

Additional entries in the solvers and relaxationFactors subDicts of fvSolution need to be
provided for each adjoint-related quantity that is computed through the solution of a
PDE. In general, the same linear solver used to solve the discretized primal PDE is also
used for its adjoint counterpart. In case multi-point runs are conducted, wildcards can
be used to avoid repetition. Regarding the relaxationFactors, in industrial cases, the
typical setup of the primal mean flow quantities (p 0.3; U 0.7;) is reversed for the adjoint
problem (pa 0.7; Ua 0.3;). In addition, relaxation factors for the adjoint turbulence
variables are generally small (≈ 0.1;) for industrial cases. A relaxation of about 0.5 is
utilized when solving the adjoint distance PDE for da. No relaxation is required for
solving the adjoint to the grid displacement PDE for ma.

sensitivityMaps/naca0012/turbulent/liftFullSetup
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Chapter 4

fvSchemes

Additional entries need to be provided in all subDicts of fvSchemes in order to solve the
adjoint PDEs. Indicative entries with some comments follow

gradSchemes
{

gradUATC cellLimited Gauss l i n e a r 1 ;
gradUaATC cellLimited Gauss l i n e a r 1 ;

}

The gradSchemes entries above are set to define the discretization of the grad terms
involved in the computation of the ATC term, section 2.3.1.1.2. A cellLimited scheme
is usually applied in industrial cases whereas a non-limited scheme can be applied in
simpler cases.

divSchemes
{

div ( −phi ,Ua) bounded Gauss linearUpwind gradUaConv ;
div ( −phi , nuaTilda ) bounded Gauss linearUpwind gradNuaTildaConv ;
div ( −phi , ka ) bounded Gauss linearUpwind gradKaConv ;
div ( −phi ,wa) bounded Gauss linearUpwind gradWaConv ;
div ( −yPhi , da ) Gauss linearUpwind gradDaConv ;

}

A divScheme of the form of div(-phi,adjointField) should be used for the convection
term of the adjoint mean flow and turbulence model PDEs; div(-yPhi,da) should be
used for the adjoint distance convection term. A first-order scheme (i.e. Gauss up-
wind) might be needed to ensure convergence in challenging industrial cases.
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laplacianSchemes
{

default Gauss l i n e a r limited 0 . 3 3 3 ;
}

The default discretization scheme usually suffices for the discretization of the adjoint
diffusion term as well as various auxiliary PDEs including a Laplace operator, such as
the adjoint to the grid displacement PDE.

sensitivityMaps/naca0012/turbulent/liftFullSetup

Note: In case the useSolverNameForFields switch is set to true in either the primal, sec-
tion 2.2.1, or adjoint, section 2.3.1.1, setup, the field names in the entries of fvSchemes
should be adapted accordingly in order to use the desired discretization schemes. Spe-
cial attention should be paid to the divSchemes.

sensitivityMaps/sbend/turbulent/lowRe/multiPoint

In addition, if average is set to true in the primalSolver dict (section 2.2.1.1.1) and aver-
aging iterations have been performed for the primal, the adjoint equations that follow
will be solved using the mean primal fields. This should be taken into consideration
when defining the discretization schemes for the adjoint equations. For instance, div(-
phiMean,Ua) should be used instead of div(-phi,Ua).

sensitivityMaps/motorBike

Wildcards can be used to cover both above-mentioned cases, as follows

divSchemes
{

" div \( − phi . * ,Ua. * \ ) " bounded Gauss linearUpwind gradUaConv ;
}
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adjointRASProperties

adjointRASModel adjointSpalartAllmaras ;
adjointTurbulence on ;

The adjointRASProperties dictionary is located in constant and is used to define the
adjoint turbulence model to be used. Its entries are

adjointRASModel (adjointLaminar, adjointSpalartAllmaras, adjointkOmegaSST)
Type of the adjoint turbulence model. adjointLaminar is used either when solving the
adjoint to laminar flows or when the “frozen turbulence” assumption is made. No ex-
tra PDEs are solved when using this option. The adjointSpalartAllmaras and adjoin-
tkOmegaSST options solve the PDEs of the adjoint to the Spalart Allmaras, [7, 11], and
k −ω SST, [2], turbulence models. Boundary conditions, solvers, relaxation factors and
discretization schemes should be set for nuaTilda and ka, wa, respectively. Details for
each of the above are given in chapters 3, 4 and 6.

adjointTurbulence (on|off)
Whether or not to solve the adjoint to the turbulence model PDEs.

sensitivityMaps/naca0012/turbulent/liftFullSetup

5.1 adjointSpalartAllmaras

An optional dictionary can be provided for the adjointSpalartAllmaras model. Its en-
tries follow a similar pattern to the ones in ATCModel, section 2.3.1.1.2, for smoothing
out numerically challenging terms.

adjointSpalartAllmarasCoeffs
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{
nSmooth 0 ;
zeroATCPatchTypes ( wall patch ) ;
maskType pointCells ;

}

sensitivityMaps/motorBike

5.2 adjointkOmegaSST

No additional options are available for this model.

shapeOptimisation/sbend/turbulent/kOmegaSST/opt



Chapter 6

Adjoint boundary conditions

Files defining the adjoint boundary conditions (BCs) should be provided at the start-
Time folder. The type of adjoint BCs to be applied in each patch depends on the type of
primal BCs used there. In the sections that follow, general guidelines are provided for
the definitions of BCs for the adjoint velocity (Ua), adjoint pressure (pa), adjoint tur-
bulence model (nuaTilda), adjoint distance (d a) and adjoint grid displacement (ma)
fields. Boundary conditions for the latter two are set by the solver automatically and
are mentioned here in the sake of completeness.

For constrained patches (i.e. slip, symmetry, symmetryPlane, cyclic, etc), the same
BC types imposed on the primal fields should also be applied to their adjoint counter-
parts.

6.1 Ua boundary conditions

• adjointInletVelocity: Inlet boundaries where a fixedValue BC is imposed on U
and a zeroGradient BC is used for p.

• adjointOutletVelocity: Outlet boundaries where a zeroGradient BC is imposed on
U and a fixedValue BC is used for p.

• adjointOutletVelocityFlux: Same as adjointOutletVelocity but for cases in which
back-flow is observed for U at the outlet.

• adjointWallVelocity: Wall boundaries where a fixedValue BC is imposed on U and
a zeroGradient BC is used for p. If nutUSpaldingWallFunction is imposed on nut
(high-Re turbulence models), the boundary condition will automatically apply
the adjoint wall function technique, [7]. Otherwise, a typical low-Re boundary
condition will be applied, [7].

49



50 CHAPTER 6. ADJOINT BOUNDARY CONDITIONS

• adjointWallVelocityLowRe: Same as adjointWallVelocity but only for low-Re or
laminar flows.

• adjointRotatingWallVelocity: Same as adjointWallVelocity but also provides the
contributions to the sensitivity derivatives due to the change in the boundary
face positions, in case rotatingWallVelocity is used for the primal run.

• adjointFarFieldVelocity: Far-field boundaries where an inletOutlet or freestream
BC is imposed on U .

6.2 pa boundary conditions

• zeroGradient: Inlet and wall boundaries where a fixedValue BC has been imposed
on U and a zeroGradient BC has been used for p.

• adjointOutletPressure: Outlet boundaries where a zeroGradient BC has been im-
posed on U and a fixedValue BC has been used for p.

• adjointFarFieldPressure: Far-field boundaries where an outletinlet BC is imposed
on p.

6.3 nuaTilda boundary conditions

• adjointInletNuaTilda: Inlet boundaries where a fixedValue BC is imposed on nu-
Tilda.

• adjointOutletNuaTilda: Outlet boundaries where a zeroGradient BC is imposed
on nuTilda.

• adjointOutletNuaTildaFlux: Same as adjointOutletNuaTilda, but for cases in which
back-flow is observed for U at the outlet.

• fixedValue: Wall boundaries, with or without wall functions.

• adjointFarFieldNuaTilda: Far-field boundaries where an inletOutlet or freestream
BC is imposed on nuTilda.

6.4 ka boundary conditions

• adjointZeroInlet: Inlet boundaries where a fixedValue BC is imposed on k.

• adjointOutletKa: Outlet boundaries where a zeroGradient BC is imposed on k.
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• adjointOutletFlux: Same as adjointOutletKa, but for cases in which back-flow is
observed for U at the outlet.

• kaqRWallFunction: Wall boundaries, where a kqRWallFunction BC is imposed
on k.

• adjointFarFieldTMVar1: Far-field boundaries where an inletOutlet or freestream
BC is imposed on k.

6.5 wa boundary conditions

• adjointZeroInlet: Inlet boundaries where a fixedValue BC is imposed on omega.

• adjointOutletWa: Outlet boundaries where a zeroGradient BC is imposed on omega.

• adjointOutletFlux: Same as adjointOutletWa, but for cases in which back-flow is
observed for U at the outlet.

• waWallFunction: Wall boundaries, where an omegaWallFunction BC is imposed
on omega.

• adjointFarFieldTMVar2: Far-field boundaries where an inletOutlet or freestream
BC is imposed on omega.

6.6 ma boundary conditions

• fixedValue uniform 0: All boundaries with a non-constrained type.

6.7 da boundary conditions

• fixedValue uniform 0: All inlet and outlet boundaries.

• zeroGradient All wall boundaries.
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Chapter 7

dynamicMeshDict

The setup of the volumetric B-splines morpher is explained in detailed in section 7.1.
Setting up a Laplace-based grid displacement PDE for use in conjunction with 2D
Bézier–Bernstein parameterizations in presented in section 7.2.

7.1 Volumetric B-splines Morpher

7.1.1 Control points and B-splines properties

Before executing the actual optimisation loop, some pre-processing steps have to be
undertaken in order to define the control points, the coordinates of which will act as
the design variables of the optimisation problem. The mathematical background of the
volumetric B-splines morpher is presented in detail in [8] and some basic definitions
are repeated herein in the sake of completeness.

Let bi j k
m ,m ∈ [1,3], i ∈ [0, I ], j ∈ [0, J ],k ∈ [0,K ] be the Cartesian coordinates of the

i j k-th control point of the 3D structured control grid, fig. 7.1. I , J and K are the num-
ber of control points (minus 1) per control grid direction. The Cartesian coordinates
x= [x1, x2, x3]T = [x, y, z]T of a CFD mesh point residing within the boundaries defined
by the control grid are given by

xm(u, v, w) =
I∑

i=0

J∑
j=0

K∑
k=0

Ui ,pu(u)V j ,pv (v)Wk,pw (w)bi j k
m (7.1)

Here, u= [u1,u2,u3]T = [u, v, w]T are the mesh point parametric coordinates, U ,V ,W
are the B-splines basis functions and pu, pv, pw their respective degrees, which may
be different per control grid direction.

Details about B-splines basis definitions and properties can be found in [9]. Com-
puting the Cartesian coordinates of any parameterized mesh point is straightforward,
at a negligible computational cost, as long as its parametric coordinates u are known.
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Mesh parametric coordinates can be computed with accuracy, since a mapping from
ℜ3(x, y, z) →ℜ3(u, v, w) is required. This means that volumetric B-splines can repro-
duce any geometry to machine accuracy.

Given the control points position, the knot vectors and the basis functions de-
grees, the parametric coordinates (u, v, w) of a point with Cartesian coordinates r =
[xr , yr , zr ]T can be computed by solving the system of equations

R(u, v, w) =
 x(u, v, w)−xr = 0

y(u, v, w)− yr = 0
z(u, v, w)− zr = 0

 (7.2)

where xm(u, v, w) are computed through eq. (7.1), based on the known b values. The
3×3 system of eq. (7.2) can be solved independently for each parameterized mesh
point using the Newton-Raphson method, after computing and inverting the Jacobian
∂xm/∂u j ,m, j ∈ [1,3]. Since the evaluation of the parametric coordinates of each point
is independent from any other mesh point, these computations may run efficiently in
parallel.

The aforementioned process has to be done only once and can be seen as the
“training phase” of the method. Then, after moving the control points b, the Cartesian
coordinates of each (internal or boundary) mesh point residing within the control grid
can be computed through eq. (7.1) at a very low cost, making volumetric B-splines a
powerful surface parameterization and mesh displacement tool.

The parameters for the volumetric B-splines morpher are defined in the constan-
t/dynamicMeshDict dictionary. A sample of the latter (excluding the header) is given
below, with some comments on its entries

solver volumetricBSplinesMotionSolver ;
volumetricBSplinesMotionSolverCoeffs
{

duct
{

type cartesian ;
nCPsU 9 ;
nCPsV 5 ;
nCPsW 3 ;
degreeU 3 ;
degreeV 3 ;
degreeW 2 ;

controlPointsDefinit ion axisAligned ;
lowerCpBounds ( −1.1 −0.21 −0.05) ;
upperCpBounds ( 1.1 0.39 0.15) ;
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Figure 7.1: Control grid consisting of 6×6×6 control points, around a 3D wing. Control
points are coloured based their j index value. Surface and volume mesh points, over
and around the wing, residing within the boundaries of the control grid (black box) will
be displaced following a possible displacement of the control points.

confineUMovement f a l s e ;
confineVMovement f a l s e ;
confineWMovement true ;
confineBoundaryControlPoints f a l s e ;

confineUMinCPs ( ( true true true ) ( true true true ) ) ;
confineUMaxCPs ( ( true true true ) ( true true true ) ) ;
confineVMinCPs ( ( true true true ) ) ;
confineVMaxCPs ( ( true true true ) ) ;
confineWMinCPs ( ( true true true ) ) ;
confineWMaxCPs ( ( true true true ) ) ;

}
}

One morphing box, similar to that presented in fig. 7.1, will be created for each sub-
Dict within volumetricBSplinesMotionSolverCoeffs. More than one control boxes are
supported, as long as they are not overlapping.
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7.1.1.1 Entries in each dict within volumetricBSplinesMotionSolverCoeffs

type (cartesian, cylindrical)
Coordinate system in which the control points are defined.

controlPointsDefinition (axisAligned, fromFile)
Control points can be defined in two different ways. If the axisAligned option is cho-
sen, a control grid aligned with the coordinates system defined by type will be con-
structed, by giving the coordinates of the two far points of the box in lowerCpBounds
and upperCpBounds, similar, for instance, to the way the boxToCell option is used in
topoSetDict. If the fromFile option is chosen, control points are read from the constan-
t/controlPoints/"name""timeName" file, where name is the name of the morphing box
(i.e. the name of the current subDict within volumetricBSplinesMotionSolverCoeffs)
and timeName is the current time index (0 if the optimisation is starting from scratch).
The above-mentioned file, apart from the typical OpenFOAM header, should include a
vectorList of the following format

controlPoints 27
(
( 0.133 −0.255 0.699 )
( 0.2015 −0.255 0.699 )
( 0.27 −0.255 0.699 )
( 0.133 0 0.699 )
( 0.2015 0 0.699 )
( 0.27 0 0.699 )
( 0.133 0.255 0.699 )
( 0.2015 0.255 0.699 )
( 0.27 0.255 0.699 )
( 0.133 −0.255 0.789 )
( 0.2015 −0.255 0.789 )
( 0.27 −0.255 0.789 )
( 0.133 0 0.789 )
( 0.2015 0 0.789 )
( 0.27 0 0.789 )
( 0.133 0.255 0.789 )
( 0.2015 0.255 0.789 )
( 0.27 0.255 0.789 )
( 0.133 −0.255 0.879 )
( 0.2015 −0.255 0.879 )
( 0.27 −0.255 0.879 )
( 0.133 0 0.879 )
( 0.2015 0 0.879 )
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( 0.27 0 0.879 )
( 0.133 0.255 0.879 )
( 0.2015 0.255 0.879 )
( 0.27 0.255 0.879 )
) ;

i.e., a vectorList named controlPoints, followed by the control points number and the
actual list of points. It should be noted that the order in which the points are written is
important and should be given by an iso-z, iso-y, iso-x loop (or an iso-W, iso-V, iso-U
loop, in the most general case).

nCPsU, nCPsV, nCPsW
Number of control points in the parametric directions, i.e. I+1, J+1 and K +1 in eq. 7.1.

degreeU, degreeV, degreeW
Basis function degrees in the three parametric coordinates (i.e. pu, pv and pw in eq. 7.1).
Regarding the choice of the basis functions degrees, a smaller polynomial degree will
lead to more localized (and less smooth) geometry changes. The maximum degree per
direction is nC Ps −1, which will lead to a parameterization in which all control points
affect all CFD grid points inside the parameterized domain. The suggested basis func-
tion degree is 3 since it gives the highly desirable property of local support while at the
same time maintains smoothness.

confineUMovement, confineVMovement, confineWMovement (true|false)
Whether to confine or not the movement of all control points in each of the direc-
tions of the coordinate system defined by type. The corresponding entries in v1912
were named confineX1movement, confineX2movement, confineX3movement and are
still supported.

confineBoundaryControlPoints (true|false)
When the control box separates the mesh in parameterized and non-parameterized
regions, the boundary control points of the control grid have to be fixed in order to
ensure C0 continuity at the interface of the two regions. This will ensure that mesh
elements will not overlap in the boundaries of the control grid, however, gradient and
curvature continuity might not be guaranteed. If these are of importance, the follow-
ing lists should be set accordingly:

confineUMinCPs, confineUMaxCPs, confineVMinCPs, confineVMaxCPs, confineWMinCPs,
confineWMaxCPs (empty lists)
More layers of control points can be kept fixed during the optimisation. The number of
control points to be kept fixed in each of the (U ,V ,W ) control grid directions (at the be-
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ginning -Min- and end -Max- of the control grid) can be controlled by the confine*CPs
variables. Each of these entries is a boolListList, i.e. a list of lists, containing three bools
each. A typical example of such an entry reads

confineUMinCPs ( ( true true true ) ( true true true ) ) ;

In this example, the movement of the first two columns of control points (corre-
sponding to the two triplets of booleans) in the beginning (confineUMinCPs) of the
U direction (confineUMinCPs) of the control grid is constrained in all three spatial
directions (each one corresponding to one of the three booleans in each triplet). All
confine*CPs entries are initialized to empty lists, meaning that no control points will
be kept fixed if the entries are not provided. The corresponding entries in v1912 were
named bound*CPs and are still supported.

shapeOptimisation/sbend/laminar/opt/unconstrained/BFGS

readStoredData (true|false)
If readStoredData is set to true, the code will attempt to read the parametric coordi-
nates from a file named parametricCoordinate+name, where name is the name of the
current subDict within volumetricBSplinesMotionSolverCoeffs, if the file exists. Other-
wise, the parametric coordinates will be computed anew. For more information, see
section 7.1.1.2.

maxIterations (default=10)
Maximum number of Newton-Raphson iterations to be executed for each CFD grid
point inside the control box in order to compute its parametric coordinates.

tolerance (default=1.e-10)
Convergence criterion for the Newton-Raphson procedure executed to compute CFD
grid point parametric coordinates.

7.1.1.2 Computing parametric coordinates

The parametric coordinates for the points residing within the control boxes are com-
puted by solving a 3×3 system for each point, eq. (7.2). This has to be done only once, as
a pre-processing step of the optimisation loop. This will be done automatically by the
executable driving the optimisation or the one that computes sensitivity derivatives.
Since this step can be potentially expensive for large CFD meshes and a high number
of control points, the parametric coordinates are stored as a pointVectorField in the 0
folder, named parametricCoordinates"name", where name is the control box name (i.e.
name of the corresponding subDict within volumetricBSplinesMotionSolverCoeffs). If
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the entry readStoredData is set to true, the code will attempt to read a stored paramet-
ric coordinates file. If the file is not present, parametric coordinates will be computed
from scratch.

, Since the parametric coordinates depend on the control points positions and
the degrees of the basis functions, the parametricCoordinates* files have to either
be removed manually from the starting time-step folder, or the readStoredData
entry has to be set to false each time the control points setup is altered.

7.1.1.3 Visualizing the control points

It is often useful to visualize the control points comprising the control grid before run-
ning the optimisation loop. This can be done by running the writeMorpherCPs ap-
plication, see section 8.2.1.2. writeMorpherCPs reads dynamicMeshDict and produces
the optimisation/controlPoints/"name""TimeName".csv file, where name is the name of
control box and TimeName the current time index. The file contains 9 columns, includ-
ing the (x, y, z) coordinates of the control points, their (i , j ,k) values in the structured
control grid and 3 active flags indicating whether each control point is allowed to move
in each of the 3 directions defined by type (see section 7.1.1.1) during the optimisation.
The csv file can be visualized in Paraview following the steps listed below:

• Open the file from the File/Open menu and click Apply

• From the Filters/Alphabetical menu, choose TableToPoints

• Select Points:0, Points:1, Points:2 for the X,Y and Z Column, respectively, and
click Apply.

• Adjust the size and colouring of the points according to your preference.

Apart from generating a csv file before running the optimisation loop, similar files are
generated and stored in the same folder for visualization purposes each time a new
geometry is created during the optimisation process.

shapeOptimisation/sbend/laminar/opt/unconstrained/BFGS

7.1.1.4 Continuing an optimisation loop using volumetric B-splines

This section covers the scenario of wishing to continue a job which has already ran
for a number of optimisation cycles, using the volumetric B-splines parameterization
and assuming that the initial setup used the axisAligned option for the controlPoints-
Definition (section 7.1.1). If the second job is submitted using axisAligned as well,
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then the code will disregard the already updated control point positions, as computed
by the previous optimisation cycles, and wrongly re-use the ones suggested by the
{lower,upper}CpBounds. Instead, for the second job, the fromFile option should be
used for the controlPointsDefinition, continuing the optimisation from the point it ter-
minated during the first job. An example of the steps to be followed can be found in
the Allrun script of the following tutorial

shapeOptimisation/sbend/turbulent/opt/BFGS-continuation

7.2 Laplace-based Grid Displacement Equation

In case an automatic optimisation loop is targeted for (2D) geometries that have been
parameterized using Bézier–Bernstein curves, the boundary movement has to be prop-
agated to the interior mesh. This can be done using a Laplace-based PDE and the mesh
movement solvers already existing in OpenFOAM. In particular, the velocityLaplacian
mesh motion solver is proposed, set up as

dynamicFvMesh dynamicMotionSolverFvMesh ;

motionSolverLibs ( " libfvMotionSolvers . so" ) ;

solver velocityLaplacian ;

velocityLaplacianCoeffs
{

d i f f u s i v i t y uniform ;
}

It should be noted that the velocityLaplacian motion solver can cope with mesh
movement in relatively simple geometries but usually faces difficulties in complicated
boundary movements or fine meshes used for low-Re simulations. Using a diffusivity
option that is based on the inverse distance from the moved boundaries usually im-
proves the results. A pointVectorField named pointMotionU should be supplied, with
zero fixedValue conditions for all patches expect the coupled ones. The appropriate
boundary conditions for the movement in each optimisation cycle will be set automat-
ically by the code. A cellMotionU entry should also be set in fvSolution.solvers while the
default entry in system.fvSchemes.laplacianSchemes should suffice for the discretiza-
tion of the PDE.
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Applications

8.1 solvers

8.1.1 adjointOptimisationFoam

adjointOptimisationFoam is the main executable. It can be used either to just solve the
primal and adjoint equations and compute sensitivities or to execute an automated
shape optimisation loop. Its behaviour largely depends on the setup of the optimisa-
tionDict, as described in chapter 2. In the sections that follow, the differences between
the two above-mentioned modes of operation are briefly discussed.

8.1.1.1 Solution of the primal and adjoint equations and computation of sensitivi-
ties

In this mode, adjointOptimisationFoam functions in a way similar to simpleFoam, with
the ability to also solve the adjoint equations. It should be noted that the endTime entry
in controlDict will be ignored and the nIters entry in optimisationDict (sections 2.2.1.1
and 2.3.1.1.3), for each primal and adjoint solver, will be used to define the number
of iterations to be executed and the endTime. All primal solvers for which the active
keyword is set to true will be executed, followed by the adjoint ones and, finally, the
computation of sensitivity derivatives for all adjoint solvers for which the computeSen-
sitivities flag is true (section 2.3.1.1). Equations for all active primal and adjoint solvers
will be iterated either until the residual values declared in residualControl (sections
2.2.1.1 and 2.3.1.1.3)) have been achieved or the nIters value has been reached. Upon
stopping, each solver will write results to the hard drive, with writing also performed
based on the writeInterval defined in controlDict. During the solution of the primal
equations, if the active keyword of the adjointSolvers is set to true, the objective values
defined in those adjointSolvers will be evaluated during each iteration of the primal
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solver and their values will be written in optimisation/objective/timeName/objective-
Name+Instant+adjointSolverName.

sensitivityMaps/naca0012/turbulent/liftMinimumSetup

8.1.1.2 Automated shape optimisation loops

In this mode, adjointOptimisationFoam undertakes the execution of an automated
shape optimisation loop (i.e. solve the primal and adjoint equations, compute sen-
sitivity derivatives, update the geometry and mesh for n optimisation cycles), fig. 8.1.
In order to do so, the optimisationManager entry in optimisationDict should be set to
steadyOptimisation. The endTime in controlDict now stands for the number of opti-
misation cycles to be conducted, while the writeInterval entry defines the optimisa-
tion cycles interval in which (primal and adjoint) flow results will be stored to the hard
drive. It is recommended to set purgeWrite 0; and writeInterval 1; in controlDict in or-
der to store results from all the geometries analyzed during the optimisation loop. The
objective functions convergence is written in the optimisation/objective/timeName/ob-
jectiveName+adjointSolverName whereas the convergence of objective function values
within the iterations of the primal solver for all optimisation cycles is stored in optimi-
sation/objective/timeName/objectiveName+Instant+adjointSolverName.

shapeOptimisation/sbend/laminar/opt/unconstrained/BFGS

8.2 utilities

A number of pre- and post-processing utilities related to adjoint-based optimisation
exist. These are briefly analyzed in what follows.

8.2.1 preProcessing

8.2.1.1 writeActiveDesignVariables

This utility gathers the IDs of the active design variables, for instance, as defined by
the confine* and bound*CPs options in case of a volumetric B-splines morpher (sec-
tion 7.1), and writes them in the appropriate place within the subDict pertaining to
the updateMethod defined in optimisationDict (section 2.4.3). In v1912, it was manda-
tory to run this utility before adjointOptimisationFoam in combination with most up-
dateMethods. However, since v2006, this is no longer necessary.
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8.2.1.2 writeMorpherCPs

The writeMorpherCPs utility is used to output the volumetric B-splines morpher con-
trol points, as defined by the current setup in dynamicMeshDict in a form that is con-
venient for visualization, section 7.1.1.3. It should be noted that only the control point
positions are written, without computing the parametric coordinates of CFD grid points
residing within the control points box.

8.2.2 postProcessing

8.2.2.1 computeSensitivities

The computeSensitivities utility is used to compute sensitivity derivatives at a post-
processing step, for a simulation in which the primal and adjoint fields have already
been computed but, for instance, computeSensitivities was set to false. The appropri-
ate dictionary entries must be defined, as discussed in section 2.4.1. Remember to also
set the computeSensitivities to true in the adjoint solver dicts, section 2.3.1.

8.2.2.2 cumulativeDisplacement

This utility is used to compute and write the displacement of all mesh points for each
geometry generated by an optimisation loop, from the initial geometry. The vectorial
difference of all mesh points (xnew

i − xol d
i ) is written in a pointVectorField named dis-

placement whereas the projection of this difference to the normal vector of the bound-
ary mesh points in the initial geometry ((xnew

i −xol d
i )nol d

i ) is written in a pointScalarField
named normalDisplacement. Keeping in mind the convention for the surface normal
unit vector, facing from the fluid to the solid boundaries, positive normal displace-
ments indicate a movement aligned to the geometry normal (“inwards” or “outwards”,
for external or internal aerodynamics, respectively); negative normal displacements
indicate a movement opposite to the geometry normal (“outwards” or “inwards” for
external or internal aerodynamics, respectively).

shapeOptimisation/sbend/laminar/opt/unconstrained/BFGS
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Figure 8.1: The adjoint-based shape optimisation loop executed by adjointOptimisa-
tionFoam when run in steadyOptimisation mode.
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