USER MANUAL

"adjointOptimisationFoam, an OpenFOAM-based optimisation tool"

Prepared by
the Parallel CFD \& Optimization Unit, School of Mechanical Engineering, National Technical University of Athens ${ }^{1}$
December 2022

[^0]
Contents

1 Introduction 7
2 optimisationDict 9
2.1 optimisationManager 9
2.2 primalSolvers 9
2.2.1 Entries within each primalSolver sub-dictionary 10
2.2.1.1 solutionControls 11
2.2.1.1.1 averaging 11
2.2.1.2 fvOptions 12
2.3 adjointManagers 12
2.3.1 Entries within each adjointManager sub-dictionary 14
2.3.1.1 Entries within each adjoinSolvers sub-dictionary 14
2.3.1.1.1 objectives 15
2.3.1.1.2 ATCModel 22
2.3.1.1.3 solutionControls 23
2.4 optimisation 23
2.4.1 sensitivities 23
2.4.1.1 surface 24
2.4.1.2 surfacePoints 28
2.4.1.3 volumetricBSplines 28
2.4.1.4 volumetricBSplinesFI 29
2.4.1.5 Bezier 29
2.4.1.6 BezierFI 31
2.4.1.7 multiple 31
2.4.2 optimisationType 32
2.4.3 updateMethod 32
2.4.3.1 steepestDescent 33
2.4.3.2 conjugateGradient 33
2.4.3.3 BFGS 34
2.4.3.4 LBFGS 35
2.4.3.5 SR1 36
2.4.3.6 constraintProjection 36
2.4.3.7 SQP 37
2.4.4 meshMovement 38
2.4.4.1 volumetricBSplines 39
2.4.4.2 volumetricBSplinesExternalMotionSolver 39
2.4.4.3 Bezier 40
3 fvSolution 43
4 fvSchemes 45
5 adjointRASProperties 47
5.1 adjointSpalartAllmaras 47
5.2 adjointkOmegaSST 48
6 Adjoint boundary conditions 49
6.1 Ua boundary conditions 49
6.2 pa boundary conditions 50
6.3 nuaTilda boundary conditions 50
6.4 ka boundary conditions 50
6.5 wa boundary conditions 51
6.6 ma boundary conditions 51
6.7 da boundary conditions 51
7 dynamicMeshDict 53
7.1 Volumetric B-splines Morpher 53
7.1.1 Control points and B-splines properties 53
7.1.1.1 Entries in each dict within volumetricBSplinesMotionSolver- Coeffs 56
7.1.1.2 Computing parametric coordinates 58
7.1.1.3 Visualizing the control points 59
7.1.1.4 Continuing an optimisation loop using volumetric B-splines 59
7.2 Laplace-based Grid Displacement Equation 60
8 Applications 61
8.1 solvers 61
8.1.1 adjointOptimisationFoam 61
8.1.1.1 Solution of the primal and adjoint equations and compu- tation of sensitivities 61
8.1.1.2 Automated shape optimisation loops 62
8.2 utilities 62
8.2.1 preProcessing 62
8.2.1.1 writeActiveDesignVariables. 62
8.2.1.2 writeMorpherCPs . 63
8.2.2 postProcessing . 63
8.2.2.1 computeSensitivities . 63
8.2.2.2 cumulativeDisplacement . 63

Chapter 1

Introduction

The present User Manual serves as a guide for the setup and usage of the OpenFOAM executable adjointOptimisationFoam, included in OpenFOAM-v2006. Emphasis is given on the dictionaries and entries required to setup the continuous adjoint solvers and their utilities. The manual assumes that the reader is familiar with the OpenFOAM environment. No theoretical background for the adjoint method is provided in this document, unless necessary for the explanation of the code setup. The reader should refer to the relevant publications for details on the adjoint method, [3, 7, 11]. A complete list of bibliographic references to the developed adjoint methods can be found in the relevant publications listed here.

In the contents of this manual, the following conventions are used. Keywords mentioned in italics will refer to OpenFOAM dictionaries or dictionary entries. Blue color will be used to identify dictionaries or entries that are optional. Red color will be used to identify default values for variables, if they are not explicitly provided. Green color will be used to indicate the path to certain tutorials. All tutorials pertaining to adjointOptimisationFoam can be found under
\$FOAM_TUTORIALS/incompressible/adjointOptimisationFoam
Magenta color will be used to indicate that an option is run time modifiable.
Chapter 2 describes in detail the entries of optimisationDict, the basic dictionary driving the adjoint code. Chapter 3 describes the entries to be added to fuSolution while chapter 4 the ones to be added to fuSchemes. Chapter 5 describes entries related to the adjoint to turbulence models, chapter 6 provides guidelines for defining the adjoint boundary conditions while chapter 7 explains the setup for deforming the mesh during shape optimisation runs, including the setup of a volumetric B-splines morpher. Chapter 8 describes the applications (solvers and utilities) used to solve the flow (primal) and adjoint equations, compute the sensitivity derivatives and perform automated shape optimisation loops.

Chapter 2

optimisationDict

optimisationDict is the main dictionary in which almost all information about the solution of the primal and adjoint equations is set up. It is located in system and needs to be present for practically all applications presented in section 8 to run. The various sub-dictionaries and entries of optimisationDict are presented in detail in the sections that follow.

2.1 optimisationManager

optimisationManager singleRun;
The optimisationManager entry defines the mode of operation of the adjointOptimisationFoam executable.
optimisationManager: (singleRun, steadyOptimisation)
singleRun is used to solve the primal and adjoint equations just once, without performing an optimisation loop while steadyOptimisation is used when an automated optimisation loop is targeted. Further details about the setup of the code in each of these scenarios are given in sections 8.1.1.1 and 8.1.1.2.

2.2 primalSolvers

primalSolvers
\{
p1
\{

```
        active true;
        type incompressible;
        solver simple;
        useSolverNameForFields false;
        solutionControls
        {
        nIters 3000;
        residualControl
        {
            "p.*" l.e-8;
            "U.*" l.e-8;
        }
        averaging
        {
            average true;
            startIter 1000;
        }
        }
        fvOptions {}
    }
}
```

The primalSolvers dictionary is where the solver(s) of the primal equations are defined. One set of primal equations will be solved for each sub-dictionary within primalSolvers. A situation in which more than one primal solvers must be used is when tackling multi-point optimisation problems (e.g. minimizing airfoil drag in two different farfield flow angles).

2.2.1 Entries within each primalSolver sub-dictionary

active: (true|false)
Whether the primal equations corresponding to this solver are going to be solved or not.
type: (incompressible)
Type of the primal solver. Only one option valid for now.
solver: (simple, RASTurbulenceModel)
Solution algorithm used to solve the primal equations. simple will replicate the behaviour of simpleFoam while RASTurbulenceModel will solve the turbulence model PDEs, as set-up in constant/turbulenceProperties, using constant U and $p h i$ fields.
useSolverNameForFields:(true|false)
If set to true, all flow variable names related to this solver will be appended with the solver name (e.g. "U" would become "Upl"). If this is the case, the entries in fuSolution (solvers, relaxationFactors, etc) and fuSchemes (discretization schemes for grads, divs, etc) have to appropriately be adapted manually. This flag should be set to true for multi-point runs and, for convenience sake, should better be kept to false for singlepoint runs. If set to true, boundary conditions will be read in the following way:

- If a file exists with the specific field name (e.g. "Up1"), boundary conditions will be read from there.
- If not, the code will attempt to read the base field file (e.g. "U"). If this fails, the code will exit with an appropriate error message.

Note: Boundary conditions that require field names (e.g. inletOutlet requires the "phi" name, which defaults to "phi") should be set appropriately.

2.2.1.1 solutionControls

solutionControls contains entries used to manage the solution process of the primal equations. For the simple solver, among others, its entries include all entries that would be read through system/fuSolution/SIMPLE if simpleFoam was ran instead of adjointOptimisationFoam.
Note: the equivalent entries in system/fuSolution/SIMPLE will be disregarded.
Additional entries include:

nIters

Maximum number of iterations when solving the primal equations.
nInitialIters optional, default=nIters
The number of primal iterations to be executed in the first optimisation cycle. Could potentially be higher than niters, since the primal equations will likely require more iterations to converge in the first optimisation cycle than in the subsequent ones.

2.2.1.1.1 averaging

averaging is optional. It controls averaging of the primal fields during the solution of the primal equations. This is mainly used to feed the adjoint equations with averaged primal fields in cases a limit-cycle oscillation manifests during the primal solution (e.g.
solving a, practically, unsteady flow using a steady-state solver like simpleFoam).
average (true, false)
Whether to perform averaging or not. If set to true, all primal fields related to the solver will be averaged (e.g. $U, p, p h i$, turbulence model variables, etc). Averaged field names consist of the original field name, appended by 'Mean'.

startIter

Starting iteration of the averaging process.
shapeOptimisation/motorBike

2.2.1.2 fvOptions

The fuOptions dict is optional. Source terms that are generally applied through the system/fuOptions dict (e.g. MRFSource, explicitPorosityModel, etc) should be inserted here.

2.3 adjointManagers

```
adjointManagers
{
    aml
    {
        primalSolver pl;
        operatingPointWeight 1;
        adjointSolvers
        {
            asl
            {
                // choose adjoint solver
                // -_-_-_-_-_-_-_-_-_-_-_
                active true;
                type incompressible;
                solver adjointSimple;
                useSolverNameForFields false;
                computeSensitivities true;
                isConstraint false;
                // manage objectives
```

```
//
objectives
{
        type incompressible;
        objectiveNames
        {
            losses
            {
                type PtLosses;
                    weight 1;
                    patches (Inlet Outlet);
                }
        }
}
// ATC treatment
// --------------
ATCModel
{
        ATCModel standard;
        extraConvection 0;
        zeroATCPatchTypes ();
        nSmooth 0;
        maskType faceCells;
}
// solution control
//
solutionControls
{
        nIters 3000;
        printMaxMags true;
        residualControl
        {
        "pa.*" 1.e-7;
        "Ua.*" 1.e-7;
        }
        averaging
        {
            average true;
            startIter 1000;
    }
}
```

```
} } }
```

One adjointManager should be defined for each primal solver present in the primalSolvers dictionary (section 2.2). Each adjointManager is responsible for the adjoint PDEs to be solved at the corresponding operating point.

2.3.1 Entries within each adjointManager sub-dictionary

```
primalSolver
```

The name of the primal solver dict (section 2.2) corresponding to the current operating point.
operatingPointWeight Defaults to 1
When having multiple objective functions defined across many operating points, they have to be concatenated into a single one using appropriate weights, i.e. $J=\sum_{i} w_{i}^{o p} J_{i}^{o p}$, where J is the concatenated objective function summing contributions from all operating points, $J_{i}^{o p}$ is the objective of i-th operating point (see also section 2.3.1.1.1 and eq. 2.1 and $w_{i}^{o p}$ the corresponding weight; operatingPointWeight corresponds to $w_{i}^{o p}$.
adjointSolvers
A list of dictionaries, setting up the adjoint solvers to be used in this operating point. One set of adjoint PDEs will be solved for each adjoint solver and one corresponding set of sensitivity derivatives will be computed. Use multiple adjointSolvers only if sensitivities of multiple objectives must be computed separately from each other. If the weighted sum of different objectives is of interest, a single adjointSolver should be used and the weights of each objective should be defined in the objectives dictionary, section 2.3.1.1.1.
Note: The names of the sub-dictionaries within adjointSolvers should be unique across all operating points (i.e. across all adjointManagers).

2.3.1.1 Entries within each adjoinSolvers sub-dictionary

active:(true|false)
Whether the adjoint equations are going to be solved for this adjointSolver.
type: (incompressible)
Type of the adjoint solver. Only one option valid for now.
type: (adjointSimple)
Solution algorithm used to solve the adjoint equations. Only the adjointSimple option is available for now.
useSolverNameForFields: (true|false)
The equivalent of the useSolverNameForFields in the primalSolver setup, section 2.2.1. Should be set to true if more than one adjointSolvers are present.
computeSensitivities: (true|false)
Whether to compute sensitivity derivatives or not, after solving the adjoint equations.
isConstraint: (true|false)
Whether the objective function of this solver will act as a constraint. See also section 2.4.3 for the appropriate updatheMethods to be used in the presence of constraints.

2.3.1.1.1 objectives

type: (incompressible)
Type of objective functions to be constructed. Only one option is valid for the moment.
objectiveNames
A list of dictionaries corresponding to the objective functions to be minimized. Each objective function value is written in a file located in the optimisation folder, under objective/TimeName/objectiveName+AdjointSolverName. One set of adjoint equations is solved for each adjointSolver, minimizing the weighted sum of the objectives declared in objectiveNames, i.e.

$$
\begin{equation*}
J^{o p}=\sum_{i} w_{i} J_{i} \tag{2.1}
\end{equation*}
$$

Note: The names in objectiveNames should be unique across all adjointManagers points and adjointSolvers.

Entries in each dictionary under objectiveNames

The entries in each dictionary under objectiveNames depend on the objective type. The two mandatory entries are
type (force, forceTarget, moment, PtLosses, partialVolume)
The type of the objective to be minimized.
weight
Objective function weight (see also eq. 2.1).
A typical setup and a short description for each of the available objectives follows

force

$$
\begin{equation*}
J=\frac{\int_{S_{W}} \rho\left(-\tau_{i j} n_{j}+p n_{i}\right) r_{i} d S}{\frac{1}{2} \rho A U_{\infty}^{2}} \tag{2.2}
\end{equation*}
$$

where $\tau_{i j}$ are the components of the stress tensor, p is the pressure divided by the constant density ρ and \mathbf{n} the unit normal vector. Vector \mathbf{r} defines the direction in which the force vector should be projected (e.g. parallel to the farfield velocity to minimize drag). In what follows, repeated indices imply summation. In addition, S_{W} are the wall patches on which force is defined, A is the frontal area and U_{∞} the farfield velocity magnitude.

A typical force dictionary would read

```
drag
{
    weight 1.;
    type force;
    patches ("wall.*" wallGroup); // wild cards, group names, etc
    direction (0.99939 0.03489 0);
    Aref 2.;
    rhoInf 1.225;
    UInf 1.;
}
```

Note: Recall that the code assumes objectives are going to be minimized. If the maximization of a force is targeted, use the opposite force direction vector.

```
sensitivityMaps/naca0012/laminar/drag
```


forceTarget

$$
\begin{equation*}
J=F-F_{t a r} \tag{2.3}
\end{equation*}
$$

where F is the force projected to a certain direction, as defined in the force objective, and $F_{t a r}$ a target force value.

The forceTarget dictionary is the same as that of of the force objective, with an additional entry specifying the target force value

```
drag
{
    weight 1.;
    type force;
    patches ("wall.*" wallGroup); //wild cards, group names, etc
    direction (0.99939 0.03489 0);
    Aref 2.;
    rhoInf 1.225;
    UInf 1.;
    target 0.45;
}
```

Note: The forceTarget objective should only be used as a constraint (see also the isConstraint entry in section 2.3.1.1.
moment

$$
\begin{equation*}
J=\frac{\int_{S_{W}} \rho r_{i}^{M} e_{i j k}\left(x_{j}-x_{j}^{C}\right)\left(-\tau_{k l} n_{l}+p n_{k}\right) d S}{\frac{1}{2} \rho A l U_{\infty}^{2}} \tag{2.4}
\end{equation*}
$$

where $\mathbf{r}^{\mathbf{M}}$ is the moment direction to be minimized, \mathbf{x} the position vector of each boundary face, $\mathbf{x}^{\mathbf{C}}$ the position vector of the rotation center, l the reference length and $e_{i j k}$ the permutation symbol. The rest of the symbols coincide with those defined in force.

A typical moment dictionary would read

```
moment
{
```

weight
type
patches
direction
rotationCenter
Aref
1Ref
rhoInf
UInf \};
1.; moment;
("wall.*" wallGroup) ;
(0 0 1) ;
(0 0 0) ;
1.;
1.;
1.225;

6 .;

PtLosses

$$
\begin{equation*}
J=-\int_{S_{I, O}}\left(p+\frac{1}{2} v_{k}^{2}\right) v_{i} n_{i} d S \tag{2.5}
\end{equation*}
$$

where S_{I} and S_{O} are the inlet and outlet patches, respectively. The inlet and outlet patches can be prescribed in the patches entry.

```
losses
{
    weight 1.;
    type PtLosses;
    patches (Inlet Outlet);
};
```

Note: In case the patches entry is missing, the code will attempt to identify the inlet/outlet patches automatically, by checking the mass flow from each mesh patch. This identification happens before the flow equations are solved, so the flow initialization might affect it.

```
sensitivityMaps/sbend/laminar
```


partialVolume

$$
\begin{align*}
J & =\frac{V-V_{\text {init }}}{V_{\text {init }}} \tag{2.6a}\\
V & =-\frac{1}{3} \int_{S_{W}} x_{k} n_{k} d S \tag{2.6b}
\end{align*}
$$

where V is the volume enclosed by the patches defining S_{W} and $V_{i n i t}$ is the volume of the initial geometry, defined in the same way.

```
losses
{
    weight 1.;
    type partialVolume;
    patches (pressure suction);
};
```

Note: The partialVolume objective should only be used as a constraint (see also the isConstraint entry in section 2.3.1.1.

```
shapeOptimisation/naca0012/lift/opt/constraintProjection
```

nutSqr

$$
\begin{equation*}
J=\int_{\Omega^{\prime}} v_{t}^{2} d \Omega \tag{2.7}
\end{equation*}
$$

where Ω^{\prime} is the part of the computational domain in which the objective is defined and v_{t} is the turbulent viscosity. The objective has been used in the past to qualitatively quantify and minimize noise [8].

```
noise
{
    weight 1.;
    type nutSqr;
    zones (zonel zone2 ...);
};
```

zones are the cellZones defining Ω^{\prime}.

```
shapeOptimisation/sbend/turbulent/SA/opt/nutSqr
```


flowRate

$$
\begin{equation*}
J=\int_{S_{O}} v_{i} n_{i} d S \tag{2.8}
\end{equation*}
$$

where S_{O} are the patches used to define the objective function (usually one or more outlets).

```
flowRate
{
    weight -1; // maximize
    type flowRate;
    patches (outletl);
}
```

Note: You can use a negative weight if you want to maxinize your objective function.
shapeOptimisation/fork-uneven/flowRate

flowRatePartition

$$
\begin{align*}
J & =\frac{1}{2} \sum_{l=1}^{L}\left(t_{l}-\frac{\int_{S_{O_{l}}} v_{i} n_{i} d S}{m_{I}}\right)^{2} \\
m_{I} & =-\int_{S_{I}} v_{i} n_{i} d S \tag{2.9}
\end{align*}
$$

defines a metric that quantifies the distribution of the inlet flow rate (m_{I}) to specific outlets $\left(S_{O_{l}}\right)$ with target percentages $\left(t_{l}, l \in[1, L]\right.$, where L is the number of specified outlet patches).

```
partition
{
    weight 1;
    type flowRatePartition;
    inletPatches (inlet); // used to compute m_I
    outletPatches (outlet1 outlet2);
    // Optional entry. If abscent, inlet flow rate will
    // be partitioned equally between outlets
    // targetPercentages (0.5 0.5);
}
```


shapeOptimisation/fork-uneven/flowRatePartition

uniformityPatch

$$
\begin{align*}
J & =\frac{1}{2} \frac{\int_{S}\left(v_{i}-\overline{v_{i}}\right)^{2} d S}{\int_{S} d S} \\
\overline{v_{i}} & =\frac{\int_{S} v_{i} d S}{\int_{S} d S} \tag{2.10}
\end{align*}
$$

is a uniformity index to be minimized, quantifying the variance of the velocity vector v_{i} w.r.t. the spatially averaged velocity $\overline{v_{i}}$, over prescribed surfaces (patches) S.

```
uniformity
{
    weight 1;
```

```
    type uniformityPatch;
    patches (outlet2);
}
```

Note: In case the patches entry is missing, the code will attempt to identify the outlet patches automatically, by checking the volume flow-rate from each mesh patch. This identification happens before the flow equations are solved, so the flow initialization might affect it.

shapeOptimisation/fork-uneven/uniformityPatch

uniformityCellZone

$$
\begin{align*}
J & =\frac{1}{2} \frac{\int_{\Omega^{\prime}}\left(v_{i}-\overline{v_{i}}\right)^{2} d \Omega}{\int_{\Omega}^{\prime} d \Omega} \\
\overline{v_{i}} & =\frac{\int_{\Omega}^{\prime} v_{i} d \Omega}{\int_{\Omega}^{\prime} d \Omega} \tag{2.11}
\end{align*}
$$

similar to uniformityPatch, but this time defined over parts of the interior of the computational domain, Ω^{\prime}, set through cellZones.

```
uniformity
{
    weight 1;
    type uniformityCellZone;
    zones (zone);
}
```

shapeOptimisation/sbend/laminar/opt/unconstrained/uniformityCellZone

powerDissipation

$$
\begin{equation*}
J=\frac{1}{2} \int_{\Omega^{\prime}}\left(v+v_{t}\right)\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)^{2} d \Omega \tag{2.12}
\end{equation*}
$$

is the fluid power that is dissipated within part of the computation domain, Ω^{\prime}, defined through cellZones.

```
powerDissipation
{
    weight 1;
    type powerDissipation;
    zones (zone);
}
```

Note: In the absence of stresses on the "inlets" and "outlets" of the cellZones used to define the objective function, the latter is equivalent to volume flow-rate weighted total pressue losses (see PtLosses), [6].
shapeOptimisation/sbend/turbulent/SA/opt/powerDissipation

2.3.1.1.2 ATCModel

The ATCModel dict provides the available options for the so-called Adjoint Transpose Convection (ATC) term, existing in the adjoint momentum equations. The ATC is numerically stiff and can often cause convergence difficulties for the adjoint equations. The ATCModel dict provides some options to smooth it in order to facilitate convergence in industrial cases. Its entries read:

ATCModel (standard, UaGradU, cancel)
Form of the ATC term. The standard option computes it as $u_{j} \frac{\partial \nu_{j}}{\partial x_{i}}$, where \mathbf{v} and \mathbf{u} are the primal and adjoint velocity vectors, respectively. It is formulated by differentiating the non-conservative form of the convection term in the primal momentum equations. The UaGradU option computes the ATC term as $-v_{j} \frac{\partial u_{j}}{\partial x_{i}}$ and is formulated by differentiating the conservative form of the convection term in the primal momentum equations. The cancel option excludes the ATC term from the adjoint momentum equations during the solution of the adjoint PDEs (at the same time, of course, loosing some accuracy depending on the case). In order of decreasing robustness, the options can be given as (cancel, standard, UaGradU).
extraConvection Defaults to 0 .
In order to facilitate convergence, add and subtract the adjoint convection term this many times, using slightly different discretization schemes in order to add numerical dissipation.
zeroATCPatchTypes Defaults to an empty wordList.
A wordList. Zero the ATC term next to patches of the provided types. No zeroing will be
conducted if the wordList is empty.
zeroATCZones Defaults to an empty wordList.
A wordList. Similar to zeroATCPatchTypes but works on the provided cellZones.
n Smooth Defaults to 0 .
Propagate the smoothing of the ATC term, applied to the cells collected through zeroATCPatchTypes and zeroATCZones, by using a Laplacian-like filter n Smooth times.
maskType (faceCells, pointCells)
How will the cells next to the zeroATCPatchTypes will be chosen for smoothing the ATC term. If faceCells is used, every cell having a face in the zeroATCPatchTypes boundaries will be chosen whereas if pointCells is used, every cell that has a point in the zeroATCPatchTypes will be used.

```
sensitivityMaps/naca0012/turbulent/liftFullSetup
```


2.3.1.1.3 solutionControls

solutionControls has entries used to manage the solution process of the adjoint equations. Its entries are the same as the ones in the solutionControls dictionary of the primalSolvers dict, section 2.2.1.1. Averaging can be applied to the adjoint fields, in a similar manner used for the primal ones, section 2.2.1.1.1. In this case, the mean adjoint fields will be used to compute the sensitivity derivatives.

Additional entries read:
printMaxMags: (true|false)
Whether to print the maximum values of the adjoint fields to the log file. These can be useful indicators of the simulation stability.

2.4 optimisation

The optimisation dict is optional and should be present only when an automated optimisation loop is to be executed or sensitivity derivatives should be computed. Its subDicts follow:

2.4.1 sensitivities

```
sensitivities
{
    type surfacePoints;
    patches (pressure suction);
    options ...
}
```

The sensitivities dict is where the setup for the computation of sensitivity derivatives is provided. Sensitivities will be computed after all adjoint PDEs are solved, for the adjoint solvers for which computeSensitivities is set to true, section 2.3.1.1. Only two entries are mandatory and based on them, usually additional entries or dictionaries are required. The mandatory entries are

```
    sensitivityType
(
surface
surfacePoints
volumetricBSplines
volumetricBSplinesFI
Bezier
BezierFI
multiple
)
```


patches

On which patches to compute sensitivities. Wildcards and group names allowed. Even for sensitivity computations that do not depend on surface integrals (e.g. sensitivityVolBSplinesFI or sensitivityBezierFI), the patches entry should be completed correctly since the so-called direct sensitivities will be computed there.

2.4.1.1 surface

Used to compute the so-called sensitivity maps, i.e. the derivative of the objective function w.r.t. the normal displacement of the boundary wall faces. Upon computation, a volScalarField named faceSensNormal, appended with the name of the adjointSolver, will be written at the current time-step folder for each adjointSolver declared, section 2.3.1. Keeping in mind the convention for the surface normal unit vector, facing from the fluid to the solid boundaries, positive sensitivities indicate a movement opposite to the geometry normal ("outwards" or "inwards", for external or internal aerodynamics, respectively); negative sensitivities indicate a movement aligned to the geometry
normal ("inwards" or "outwards", for external or internal aerodynamics, respectively) to minimize the given objective function, fig. 2.1

A typical setup reads

```
type surface;
patches ( "wall.*");
includeSurfaceArea true;
includeObjectiveContribution true;
includeMeshMovement true;
adjointMeshMovementSolver
{
    iters 300;
    tolerance l.e-7;
}
// Entries related to sensitivity smoothing
smoothSensitivities true;
meanRadiusMultiplier 10;
// radius 1;
```

includeSurfaceArea (true|false)
Whether to include the local face area in the sensitivity values or not. Should be set to true if the actual impact of a face movement is required and the mesh resolution impact should be taken into consideration (i.e. a unit movement of a face with a large area will cause a relatively big shape change and, hence, will have a large sensitivity value). On the contrary, if a normalized sensitivity distribution is required to get an overview of the surface areas with high optimisation potential, this option should be set to false. In this case, the sensitivity value should be interpreted as "what will be the change in the objective, if a node is moved in such a way that the change in the local face area is unitary".

includeObjectiveContribution (true|false)

Certain objectives give the so-called direct contributions to the sensitivities (for instance, changes in the normal surface vector in drag optimisation). This flag determines whether these contributions will be computed or not.

includeMeshMovement (true|false)

Whether to take into consideration the sensitivity contribution arising by the adjoint to the grid displacement scheme or not. If set to false, the so-called Surface Integrals (SI) formulation will be used, whereas if set to true, the so-called Enhanced Surface Integrals (E-SI) approach will be employed, [3]. The latter assumes that, after updating the geometry, the grid will be displaced using a set of Laplace-based PDEs and solves the adjoint to that problem. In order to do so, boundary conditions for the adjoint
to the grid displacement variable (a volVectorField named ma) should be set. These should be of zero fixedValue type for all boundaries, expect the constrained (i.e. cyclic, processor, symmetry, etc) ones. The ma field is generated automatically by the code, unless read from the current time-step folder. In addition, a solver for ma should be added to fuSolution and a discretization scheme for laplacian(ma) should be added in fuSchemes/laplacianSchemes, unless a default one is present. No relaxation is required for the solution of this equation. It is highly recommended to switch the includeMeshMovement to true in order to increase the accuracy of the computed sensitivities.

An additional, optional dictionary named adjointMeshMovementSolver can be provided to control the convergence of the adjoint grid displacement PDEs. If not provided, the following default values will be used. Its entries read

adjointMeshMovementSolver

iters 1000
Maximum number of iterations for the adjoint grid displacement solver.
tolerance 1.e-06
Residual to be reached before considering the adjoint grid displacement PDEs as converged.

For cases in which the Spalart-Allmaras turbulence model is differentiated (chapter5), additional entries may be supplied to the sensitivities dict. These read
includeDistance (true|false)
Whether to solve the adjoint to the eikonal equation or not, [7]; only for cases including the adjoint to the Spalart-Allmaras turbulence model, chapter 5. If set to true, boundary conditions for the adjoint distance field (a volScalarField named da) should be set. These should be of zero fixedValue type for inlet and outlet boundaries and zeroGradient ones for walls. The $d a$ field is generated automatically by the code, unless read from the current time-step folder. In addition, a solver for $d a$ should be added to $f v$ Solution, along with a relaxation factor for the da equation. A discretization scheme for $\operatorname{div}(-y P h i, d a)$ should be added in fuSchemes/divSchemes. If includeDistance is set to true, an additional optional dictionary named adjointEikonalSolver can be provided to control the convergence of the adjoint eikonal PDE. A typical example reads

```
includeDistance
true;
adjointEikonalSolver
{
    iters 300;
```

```
    tolerance l.e-7;
    epsilon 0.1;
```

\}

The iters and tolerance entries are identical to the ones in adjointMeshMovementSolver, section 2.4.1.1. The epsilon entry (default value 0.1) should be the same as the one used in fuSchemes, in the wallDist/advectionDiffusionCoeffs dictionary, if method advectionDiffusion is chosen. For cases where stability issues emerge, a higher value can be used.

Note: it is important NOT to use bounded divergence schemes for the convection term of the adjoint eikonal equation, since $y P h i$ is not conservative.

```
sensitivityMaps/naca0012/turbulent/liftFullSetup
```

smoothSensitivities (true|false)
Whether to smooth the computed sensitivity map. When computing sensitivity maps on surface meshes generated from industrial geometries, the outcome might appear noisy, especially if a volume-to-surface approach is used for meshing, e.g. as used by snappyHexMesh. Even though the sensitivity map is technically correct, the noisy patterns that appear might make the extraction of useful information challenging. Smoothing can be used to facilitate the interpretation of the sensitivity map in such cases. The sensitivity map is smoothed through a Laplace-Beltrami filter of the form

$$
\begin{equation*}
-R^{2} \frac{\partial^{2} \tilde{m}}{\partial x_{j}^{2}}+\widetilde{m}=m \tag{2.13}
\end{equation*}
$$

where m is the original sensitity map, \widetilde{m} the smoothed one and R the smoothing radius. Eq. 2.13 is solved on the part of the surface mesh defined by the patches on which the sensitivity map is computed, using the finiteArea infrastructure. If a finite area mesh is provided under constant, it will be used; otherwise it is created on-the-fly based on either an faMeshDefinition dictionary in the system directory, or constructed internally based on the sensitivity patches. An indicative example is given in fig. 2.2 , meanRadiusMultiplier (10)
By default, the smoothing radius R in eq. (2.13) is computed as a multiple of the average size of the boundary mesh elements; this multiple is given by meanRadiusMultiplier which defaults to 10 . Alternatively, the radius can be provided directly by the radius entry (value in meters).
Note: From an optimisation point of view, the smoothing of eq. (2.13) can alternatively be seen as computing the sensitivity derivatives $\delta J / \delta b_{i}$ of the objective function J w.r.t.
a different set of design variables $b_{i}, i \in[1, N]$, defined as

$$
\begin{aligned}
& x_{i}=x_{i}^{i n i t}+\widetilde{b}_{i} \\
& \widetilde{b}_{i}-R^{2} \frac{\partial^{2} \widetilde{b}_{i}}{\partial x_{j}^{2}}=b_{i}
\end{aligned}
$$

where x_{i} are the coordinates of the updated geometry, $x_{i}^{\text {init }}$ the ones of the initial geometry and \widetilde{b}_{i} a smooth displacement field. In other words, no loss of accuracy is incurred by the smoothing; instead, sensitivities are computed w.r.t. a different set of design variables.
sensitivityMaps/motorBike

2.4.1.2 surfacePoints

Same as surface, section 2.4.1.1, but sensitivities are computed w.r.t. the normal displacement of boundary points, not faces. When sensitivity maps are of interest, this option should be preferred to surface since some of the terms included in the computations (e.g. variation in the normal vector) are better posed when differentiating w.r.t. points. Upon computation, a pointScalarField named pointSensNormal, appended with the name of the adjointSolver, will be written at the current time-step folder for each adjointSolver declared, section 2.3.1. Entries discussed in section 2.4.1.1 are valid here as well, with the exception of the ones corresponding to sensitivity smoothing.

2.4.1.3 volumetricBSplines

This option computes sensitivity derivatives w.r.t. the control points of a volumetric Bsplines morpher. The theoretical background for the latter can be found in [8] whereas its OpenFOAM setup is explained in chapter 7. Sensitivities are computed using the chain rule, i.e.

$$
\begin{equation*}
\frac{\delta J}{\delta b_{n}}=\frac{\delta J}{\delta x_{i}} \frac{\delta x_{i}}{\delta b_{n}} \tag{2.14}
\end{equation*}
$$

when $\delta J / \delta x_{i}$ is the sensitivity map (see section 2.4.1.1) and $\delta x_{i} / \delta b_{n}$ is computed analytically on the surface, by differentiating the volumetric B-splines morpher. The default settings provided in section 2.4.1.1 are used to compute the sensitivity map; these can be altered through the optional surfaceSensitivities sub-dictionary.

```
type volumetricBSplines;
patches (lower upper);
surfaceSensitivities
```

 // the options listed in section 2.4.1.1
 // can be overridden here
 \}

It should be noted that since the E-SI approach for computing sensitivity maps assumes a grid displacement model of a set of Laplace-based PDEs but the volumetric B-splines morpher actually moves the mesh using an analytic/algebraic formula, slight inconsistencies might emerge in the computed sensitivities. For optimisation runs in which the maximum sensitivity accuracy is required, the volumetricBSplinesFI option (section 2.4.1.4) is proposed as a more expensive but more accurate alternative. Upon computation, the sensitivity derivatives are written in a file named volumetricBSplines, appended by the adjointSolver name and the time-step value and located in the optimisation/volumetricBSplinesDerivatives folder.

```
shapeOptimisation/sbend/laminar/primalAdjoint/
```


2.4.1.4 volumetricBSplinesFI

This options computes sensitivities of the objective function w.r.t. the control points of a volumetric B-splines morpher (see chapter 7] using the Field Integrals (FI), [3], approach. No additional entry is required apart from the mandatory ones, i.e.

```
type volumetricBSplinesFI;
patches (pressure suction);
```

Note that depending on the case (large number of CFD grid points inside the parameterized domain, large number of control points and high basis degree), computing sensitivities with this approach could be time consuming. Upon computation, the sensitivity derivatives are written in a file named volumetricBSplinesFI, appended by the adjointSolver name and the time-step value and located in the optimisation/volumetricBSplinesFIDerivatives folder.

```
shapeOptimisation/sbend/laminar/opt/unconstrained/SD
```


2.4.1.5 Bezier

Sensitivities computed w.r.t. the control points of a Bézier-Bernstein curve, using the chain rule and either the SI or the E-SI approach, depending on the setup of the surfaceSensitivities (see also sections 2.4.1.1 and 2.4.1.3). A series of pointTensorFields named $d x i d X j_{-} 0, d x i d X j_{-} 1, \ldots d x i d X j_{-} n$ should be present in the time-step folder to obtain the parameterization information (practically, the Bézier-Bernstein basis functions for each parameterized surface point and each control point).

```
type Bezier;
patches
    (lower upper);
surfaceSensitivities
{
    // the options listed in section 2.4.1.1
    // can be overridden here
}
```

An additional dictionary is required, placed as a direct subDict of optimisationDict, defining the number of control points and which of these have a confined movement in each direction.

```
Bezier
{
    nBezier 16;
    confineXmovement
    (
        true false false false false false false true
        true false false false false false false true
    );
    confineYmovement
    (
        true false false false false false false true
        true false false false false false false true
    );
    confineZmovement
    (
        true true true true true true true true
        true true true true true true true true
    );
}
```

Upon computation, the sensitivity derivatives are written in a file named Bezier, appended by the adjointSolver name and the time-step value and located in the BezierDerivatives folder. Sensitivities w.r.t. the x coordinates of all control points are written first, followed by those w.r.t the y and z coordinates.

```
sbend/laminar/primalAdjoint
```


2.4.1.6 BezierFI

Sensitivities computed w.r.t. the control points of a Bézier-Bernstein curve, utilizing the FI approach. A vectorial Laplace equation needs to be solved for each design variable, to propagate the parameterization information given in the $d x i d X j_{-} i$ files (see also section 2.4.1.5 to the interior mesh. The maximum number of iterations and con-
 provided, the default values given below will be used.

```
type BezierFI;
patches (pressure suction);
dxdbSolver
{
    iters 100;
    tolerance 1.e-11;
}
```

A volVectorField named mTilda is used for this task with zero fixedValue boundary conditions for all patches The mTilda field is generated automatically by the code, unless read from the current time-step folder. In addition, a solver for m should be added in fuSolution and a discretization scheme for laplacian(m) should be added in fuSchemes/laplacianSchemes, unless a default one is present. No relaxation is required for the solution of these equations. Upon computation, the sensitivity derivatives are written in a file named BezierFI, appended by the adjointSolver name and the time-step value and located in the optimisation/BezierFIDerivatives folder. Sensitivities w.r.t. the x coordinates of all control points are written first, followed by those w.r.t the y and z coordinates.
shapeOptimisation/naca0012/drag/primalAdjoint

2.4.1.7 multiple

```
sensitivities
{
    type multiple;
    patches (lower upper);
    sensTypes
    {
        faces
        {
            type surface;
            patches (lower upper);
```

```
    }
        points
        {
        type surfacePoints;
        patches (lower upper);
        }
    }
}
```

Provides a framework for computing multiple types of sensitivity derivatives. Sensitivities will be computed for all sub-dictionaries in sensTypes.

```
shapeOptimisation/sbend/laminar/primalAdjoint
```


2.4.2 optimisationType

```
optimisationType
{
    type shapeOptimisation;
    writeEachMesh true;
}
```

optimisationType is a subDict that should be present if optimisationManager is set to steadyOptimisation (see section 2.1) and is directly placed under optimisation. Its only mandatory entry is
optimisationType (shapeOptimisation)
defines the type of adjoint-based optimisation to be conducted. Only shapeOptimisation is available at the moment.

For shapeOptimisation runs, an additional optional entry can be supplied:
writeEachMesh (true|false)
Whether to write the meshes produced in each optimisation cycle or not, independent of whether the flow fields are going to be written in this optimisation cycle.

2.4.3 updateMethod

```
updateMethod
{
    method steepestDescent;
    //eta 1; //optional
    lineSearch
    {
        type ArmijoConditions;
    }
}
```

The method used to update the design variables is defined in this dictionary. All methods update the design variables using a scheme of the form

$$
\begin{equation*}
b_{i}^{\text {new }}=b_{i}^{\text {old }}+\eta p_{i} \tag{2.15}
\end{equation*}
$$

where \mathbf{b} are the design variables, \mathbf{p} the update direction and η a user-defined (either explicitly or implicitly, see next entries) step. The dictionary entries read
method (steepestDescent, conjugateGradient, BFGS, DBFGS, LBFGS, SR1, constraintProjection, SQP)
Which method to use to update the design variables. Only the constraintProjection and SQP methods can handle constraints.

A short description of the entries required by each update method follows.

2.4.3.1 steepestDescent

The simplest and most robust (but also, providing the slowest convergence) method to update the design variables. The update vector is computed as

$$
\begin{equation*}
p_{i}=-\frac{\delta J}{\delta b_{i}} \tag{2.16}
\end{equation*}
$$

No additional dictionary entries are required.

2.4.3.2 conjugateGradient

The Conjugate Gradient method, [1], for updating design variables. Significantly faster than steepestDescent but can still tolerate discrepancies in the sensitivities, in cases where some balance should be struck between accuracy and stability. An additional dictionary might be provided

```
conjugateGradient
{
    betaType FletcherReeves;
    activeDesignVariables (1257 ....);
}
```

betaType (FletcherReeves, PolakRibiere, PolakRibiereRestarted)
An optional entry choosing the formula to update the β variable in Conjugate Gradient, [5]. Defaults to FletcherReeves which has proved to be the most robust and should be preferred.

activeDesignVariables

A labelList informing the method which design variables are allowed to be updated. If no labelList is found, the method will update all design variables, except those kept fixed by the parameterization itself (see also section 2.4.1.5 and 7.1.1.1).

shapeOptimisation/motorBike

2.4.3.3 BFGS

```
method BFGS;
BFGS
{
    nSteepestDescent 1;
    etaHessian 1;
    scaleFirstHessian true;
    activeDesignVariables ( 1 2 5 7 ....);
}
```

The quasi-Newton BFGS method [5]. The update is computed through

$$
\begin{equation*}
\frac{\delta^{2} \tilde{J}}{\delta b_{i} \delta b_{j}} p_{j}=-\eta_{H} \frac{\delta J}{\delta b_{i}} \tag{2.17}
\end{equation*}
$$

where $\frac{\delta^{2} \tilde{J}}{\delta b_{i} \delta b_{j}}$ is an approximation of the objective function Hessian and η_{H} is a userdefined constant. BFGS and its limited memory variant (see section 2.4.3.4) are probably the most widely used methods to update the design variables in general optimisation problems. Their convergence is significantly faster than conjugateGradient or steepestDescent, however they require highly accurate sensitivity derivatives. In cases
that the primal and adjoint equations are converging without difficulties, (L)-BFGS should be the preferred methods; otherwise, conjugateGradient should be employed. The convergence rates of BFGS and steepestDescent can be compared by running the cases under

```
shapeOptimisation/sbend/laminar/opt/unconstrained/SD shapeOptimisation/sbend/laminar/opt/unconstrained/BFGS
```

nSteepestDescent 1
Number of steepest descent updates conducted before applying the BFGS approach. Should be at least one. Could be more in stiff problems. The η value defined (explicitly or implicitly) in updateMethod will be used for these updates.

etaHessian 1

In Hessian-based methods, the η value should be theoretically 1 . Since, however, BFGS is a quasi-Newton method an η_{H} value should be provided. It is usually in the range of [0.5-1].
scaleFirstHessian (true|false)
Whether to scale the first Hessian matrix computed using a correction proposed in [5]. Usually improves the convergence speed of the method.
activeDesignVariables
Same as the corresponding entry in section 2.4.3.2.

2.4.3.4 LBFGS

```
method LBFGS;
LBFGS
{
    nSteepestDescent 1;
    etaHessian 1;
    nPrevSteps 10;
    activeDesignVariables ( 1 2 5 7 ....);
}
```

The limited memory variant of the BFGS quasi-Newton method [4]. LBFGS is closely related to $B F G S$, however, instead of approximating and storing the (inverse) Hessian matrix, only a few vectors are stored that represent it implicitly. Hence, LBFGS is usually employed when the number of design variables is too large to allow storing the Hessian matrix. LBFGS has the same (optional) entries as BFGS (with the exception of
scaleFirstHessian) and includes one more
nPreuSteps 10
Number of vectors used to implicitly retrive the approximation to the Hessian matrix. A relatively small number, usually around 10 , is enough for most problems.

2.4.3.5 SR1

```
method SR1;
SR1
{
    nSteepestDescent 1;
    etaHessian 1;
    activeDesignVariables ( 1 2 5 7 ....);
}
```

The Symmetric Rank One (SR1) quasi Newton update method. Similar convergence characteristics as BFGS and identical optional entries, with the exception of scaleFirstHessian.

2.4.3.6 constraintProjection

```
method constraintProjection;
constraintProjection
{
    useCorrection true;
}
```

constraintProjection is an updateMethod that supports the handling of equality constraints, [10] . In particular, the update direction is that of steepest descent, if the part that is normal to all constraint isolines is subtracted. constraintProjection is ideal for tackling (almost) linear constraint functions throughout the optimisation. One optional entry can be provided
useCorrection (true|false)
Whether or not to use a correction taking into consideration the non-linearity of the constraint function w.r.t. the design variables. It should be noted that if useCorrection is set to false, constraintProjection can be used to only keep the value of the constraint function the same as in the first optimisation cycle and not to obtain a user-defined target value.

shapeOptimisation/naca0012/lift/opt/constraintProjection

2.4.3.7 SQP

```
method SQP;
SQP
{
    etaHessian 0.8;
    nSteepestDescent 1;
    scaleFirstHessian true;
}
```

SQP implements the Sequential Quadratic Programming method for updating the design variables in the presence of equality constraints, [5]. It attempts to iteratively satisfy the Karush-Kuhn-Tucker (KKT) conditions. The necessary Hessian matrix is approximated using BFGS and, hence, its optional entries are the same as the ones described in section 2.4.3.3. SQP, like BFGS for unconstrained optimisation problems, exhibits a very fast converge but requires a high accuracy of the sensitivity derivatives (see also comments in 2.4.3.3).

```
shapeOptimisation/sbend/laminar/opt/constrained/SQP
```

The rest of the (optional) entries in the updateMethod dictionary read
eta
If an η value (see eq. (2.15) is manually set here, it will be used for the optimisation loop. Otherwise, an η value will be computed based on the entries defined in meshMovement, see section 2.4.4.

lineSearch

Line search methods can be used to adjust the eta value from one optimisation cycle to the next. Each type of line search method attempts to find an eta value that satisfies a certain kind of conditions (see [5] for more details); if these conditions are not met, the last update is undone and the previously computed \mathbf{p} direction (see eq. (2.15) is multiplied with a new eta value. Hence, line search methods can be seen as executing an inner "optimisation loop" identifying an appropriate step value within each optimisation cycle. Their use is optional; if none is provided (i.e. the lineSearch dictionary is missing), the initial eta value will be maintained for all optimisation cycles. Additional entries in the lineSearch dictionary read

```
lineSearch
{
    type ArmijoConditions;
    minStep 0.3;
    maxIters 4;
    cl 1.e-04;
    ratio 0.7;
}
```

type (ArmijoConditions, none)
The type entry defines what kind of condition should be met for accepting the current eta value. ArmijoConditions is the only available option at the moment and, according to it, the following inequality should hold in order to accept the current eta value

$$
\begin{equation*}
\phi(\mathbf{b}+\eta \mathbf{s}) \leq \phi(\mathbf{b})+c_{1} \eta D(\phi(\mathbf{b}) ; \mathbf{s}), \tag{2.18}
\end{equation*}
$$

where $D(\phi(\mathbf{b}) ; \mathbf{s})$ is the directional derivative of ϕ w.r.t. \mathbf{b} in the direction of \mathbf{s} and ϕ is the l_{1} merit function defined as [5]

$$
\begin{align*}
& \phi=J+\mu \sum_{i=1}^{M}\left|e_{i}\right| \tag{2.19}\\
& \mu=\max \left(\left|\lambda_{i}\right|\right), i \in[1, M]
\end{align*}
$$

In eq. 2.18), the default value of c_{1} is 10^{-4} as suggested in [5] for quasi-Newton approaches computing \mathbf{s}. The initial step is tested and if eq. 2.18) is not satisfied, it is successively reduced by a factor of ratio for a maximum of maxIters times and the primal equations are solved anew. In eq. (2.19), λ_{i} are the Lagrange multipliers in case SQP is used as the updateMethod and $e_{i}, i \in[1, M]$ are the M constraint values; if no constraint is present, $\mu=0$. minStep prevents the eta value from being reduced below a certain threshold. Assigning type to none is the equivalent of excluding the lineSearch dictionary altogether.
shapeOptimisation/motorBike

2.4.4 meshMovement

```
meshMovement
{
    type volumetricBSplines;
    maxAllowedDisplacement 1.e-2;
    writeMeshQualityMetrics false;
}
```

meshMovement is a subDict of the optimisationDict and should be present when the optimisationManager is set to steadyOptimisation and optimisationType is set to shapeOptimisation. It provides information about how to translate the update of the design variables into a mesh displacement (boundary and interior) in each optimisation cycle of a shape optimisation loop.

```
    type
(
volumetricBSplines
volumetricBSplinesExternalMotionSolver
Bezier
)
Each option is analyzed in the sections that follow.
```

maxAllowedDisplacement
Provides the maximum boundary displacement to be imposed at the first optimisation cycle. If η is explicitly defined in optimisationMethod, section 2.4.3, this entry will be ignored. Otherwise, the η value will be computed based on the maxAllowedDisplacement value provided here.
writeMeshQualityMetrics (true|false)
Writes mesh quality metrics, after each mesh update, in fields for visualization purposes.

2.4.4.1 volumetricBSplines

Used to deform the boundary and the interior of the mesh using a volumetric B-splines morpher, the specifics of which are described in section 7.1 .

```
shapeOptimisation/sbend/laminar/opt/unconstrained/BFGS
```


2.4.4.2 volumetricBSplinesExternalMotionSolver

Similar to volumetricBSplines, section 2.4.4.1, but this option will use the volumetric B-splines morpher to displace only the boundary while the mesh displacement will be propagated to the interior using an alternative grid displacement model defined in $d y$ namicMeshDict. Since the volumetric B-splines morpher has proved very robust in a number of industrial applications, using volumetricBSplines is preferred to volumetricBSplinesExternalMotionSolver. This option is provided in the sake of completeness.

2.4.4.3 Bezier

Used to deform the mesh by moving parameterized Bézier-Bernstein surfaces and propagating the movement to the interior mesh by using a grid displacement model defined in dynamicMeshDict. The Bezier dict mentioned in section 2.4.1.5 needs to be present for this operation as well.

Figure 2.1: Drag sensitivity map computed on the surface of the DrivAer car model. Blue areas should be moved according to the surface normal ("inwards") to reduce drag while red areas should be moved in the opposite direction.

Figure 2.2: Drag sensitivity map computed on the surface of the motorbike (tutorial under sensitivityMaps/motorBike). Blue areas should be moved according to the surface normal ("inwards") to reduce drag while red areas should be moved in the opposite direction. The four subfigures give the smoothed sensitivity map, computed with a progressively larger sensitivity radius.

Chapter 3

fvSolution

Additional entries in the solvers and relaxationFactors subDicts of fuSolution need to be provided for each adjoint-related quantity that is computed through the solution of a PDE. In general, the same linear solver used to solve the discretized primal PDE is also used for its adjoint counterpart. In case multi-point runs are conducted, wildcards can be used to avoid repetition. Regarding the relaxationFactors, in industrial cases, the typical setup of the primal mean flow quantities ($p 0.3 ; U 0.7$;) is reversed for the adjoint problem (pa 0.7; Ua 0.3;). In addition, relaxation factors for the adjoint turbulence variables are generally small (≈ 0.1;) for industrial cases. A relaxation of about 0.5 is utilized when solving the adjoint distance PDE for $d a$. No relaxation is required for solving the adjoint to the grid displacement PDE for $m a$.
sensitivityMaps/naca0012/turbulent/liftFullSetup

Chapter 4

fvSchemes

Additional entries need to be provided in all subDicts of fuSchemes in order to solve the adjoint PDEs. Indicative entries with some comments follow

```
gradSchemes
{
    gradUATC cellLimited Gauss linear 1;
    gradUaATC cellLimited Gauss linear 1;
}
```

The gradSchemes entries above are set to define the discretization of the grad terms involved in the computation of the ATC term, section 2.3.1.1.2. A cellLimited scheme is usually applied in industrial cases whereas a non-limited scheme can be applied in simpler cases.

```
divSchemes
{
    div(-phi,Ua) bounded Gauss linearUpwind gradUaConv;
    div(-phi,nuaTilda) bounded Gauss linearUpwind gradNuaTildaConv;
    div(-phi,ka) bounded Gauss linearUpwind gradKaConv;
    div(-phi,wa) bounded Gauss linearUpwind gradWaConv;
    div(-yPhi,da) Gauss linearUpwind gradDaConv;
}
```

A divScheme of the form of $\operatorname{div}(-$ phi,adjointField $)$ should be used for the convection term of the adjoint mean flow and turbulence model PDEs; $\operatorname{div}(-y P h i, d a)$ should be used for the adjoint distance convection term. A first-order scheme (i.e. Gauss upwind) might be needed to ensure convergence in challenging industrial cases.

```
laplacianSchemes
{
    default Gauss linear limited 0.333;
}
```

The default discretization scheme usually suffices for the discretization of the adjoint diffusion term as well as various auxiliary PDEs including a Laplace operator, such as the adjoint to the grid displacement PDE.

```
sensitivityMaps/naca0012/turbulent/liftFullSetup
```

Note: In case the useSolverNameForFields switch is set to true in either the primal, section 2.2.1, or adjoint, section 2.3.1.1, setup, the field names in the entries of fuSchemes should be adapted accordingly in order to use the desired discretization schemes. Special attention should be paid to the divSchemes.

sensitivityMaps/sbend/turbulent/lowRe/multiPoint

In addition, if average is set to true in the primalSolver dict (section(2.2.1.1.1) and averaging iterations have been performed for the primal, the adjoint equations that follow will be solved using the mean primal fields. This should be taken into consideration when defining the discretization schemes for the adjoint equations. For instance, $\operatorname{div}(-$ phiMean,Ua) should be used instead of $\operatorname{div}(-p h i, U a)$.

```
sensitivityMaps/motorBike
```

Wildcards can be used to cover both above-mentioned cases, as follows

```
divSchemes
{
    "div\(-phi.*,Ua.*\)" bounded Gauss linearUpwind gradUaConv;
}
```


Chapter 5

adjointRASProperties

```
adjointRASModel adjointSpalartAllmaras;
adjointTurbulence on;
```

The adjointRASProperties dictionary is located in constant and is used to define the adjoint turbulence model to be used. Its entries are
adjointRASModel (adjointLaminar, adjointSpalartAllmaras, adjointkOmegaSST) Type of the adjoint turbulence model. adjointLaminar is used either when solving the adjoint to laminar flows or when the "frozen turbulence" assumption is made. No extra PDEs are solved when using this option. The adjointSpalartAllmaras and adjointkOmegaSST options solve the PDEs of the adjoint to the Spalart Allmaras, [7, 11], and $k-\omega$ SST, [2], turbulence models. Boundary conditions, solvers, relaxation factors and discretization schemes should be set for nuaTilda and $k a$, wa, respectively. Details for each of the above are given in chapters 3,4 and 6 .
adjointTurbulence (on|off)
Whether or not to solve the adjoint to the turbulence model PDEs.

```
sensitivityMaps/naca0012/turbulent/liftFullSetup
```


5.1 adjointSpalartAllmaras

An optional dictionary can be provided for the adjointSpalartAllmaras model. Its entries follow a similar pattern to the ones in ATCModel, section 2.3.1.1.2, for smoothing out numerically challenging terms.
adjointSpalartAllmarasCoeffs

```
{
    nSmooth 0;
    zeroATCPatchTypes (wall patch);
    maskType pointCells;
}
```

sensitivityMaps/motorBike

5.2 adjointkOmegaSST

No additional options are available for this model.
shapeOptimisation/sbend/turbulent/kOmegaSST/opt

Chapter 6

Adjoint boundary conditions

Files defining the adjoint boundary conditions (BCs) should be provided at the startTime folder. The type of adjoint BCs to be applied in each patch depends on the type of primal BCs used there. In the sections that follow, general guidelines are provided for the definitions of BCs for the adjoint velocity ($U a$), adjoint pressure ($p a$), adjoint turbulence model (nuaTilda), adjoint distance ($d a$) and adjoint grid displacement (ma) fields. Boundary conditions for the latter two are set by the solver automatically and are mentioned here in the sake of completeness.

For constrained patches (i.e. slip, symmetry, symmetryPlane, cyclic, etc), the same BC types imposed on the primal fields should also be applied to their adjoint counterparts.

6.1 Ua boundary conditions

- adjointInletVelocity: Inlet boundaries where a fixedValue BC is imposed on U and a zeroGradient BC is used for p.
- adjointOutletVelocity: Outlet boundaries where a zeroGradient BC is imposed on U and a fixedValue BC is used for p.
- adjointOutletVelocityFlux: Same as adjointOutletVelocity but for cases in which back-flow is observed for U at the outlet.
- adjointWallVelocity: Wall boundaries where a fixedValue BC is imposed on U and a zeroGradient BC is used for p. If nutUSpaldingWallFunction is imposed on nut (high-Re turbulence models), the boundary condition will automatically apply the adjoint wall function technique, [7]. Otherwise, a typical low-Re boundary condition will be applied, [7].
- adjointWallVelocityLowRe: Same as adjointWallVelocity but only for low-Re or laminar flows.
- adjointRotatingWallVelocity: Same as adjointWallVelocity but also provides the contributions to the sensitivity derivatives due to the change in the boundary face positions, in case rotatingWallVelocity is used for the primal run.
- adjointFarFieldVelocity: Far-field boundaries where an inletOutlet or freestream BC is imposed on U.

$6.2 p a$ boundary conditions

- zeroGradient: Inlet and wall boundaries where a fixedValue BC has been imposed on U and a zeroGradient BC has been used for p.
- adjointOutletPressure: Outlet boundaries where a zeroGradient BC has been imposed on U and a fixedValue BC has been used for p.
- adjointFarFieldPressure: Far-field boundaries where an outletinlet BC is imposed on p.

6.3 nuaTilda boundary conditions

- adjointInletNuaTilda: Inlet boundaries where a fixedValue BC is imposed on nuTilda.
- adjointOutletNuaTilda: Outlet boundaries where a zeroGradient BC is imposed on nuTilda.
- adjointOutletNuaTildaFlux: Same as adjointOutletNuaTilda, but for cases in which back-flow is observed for U at the outlet.
- fixedValue: Wall boundaries, with or without wall functions.
- adjointFarFieldNuaTilda: Far-field boundaries where an inletOutlet or freestream BC is imposed on nuTilda.

6.4 $k a$ boundary conditions

- adjointZeroInlet: Inlet boundaries where a fixedValue BC is imposed on k.
- adjointOutletKa: Outlet boundaries where a zeroGradient BC is imposed on k.
- adjointOutletFlux: Same as adjointOutletKa, but for cases in which back-flow is observed for U at the outlet.
- kaqRWallFunction: Wall boundaries, where a kqRWallFunction BC is imposed on k.
- adjointFarFieldTMVar1: Far-field boundaries where an inletOutlet or freestream BC is imposed on k.

6.5 wa boundary conditions

- adjointZeroInlet: Inlet boundaries where a fixedValue BC is imposed on omega.
- adjointOutletWa: Outlet boundaries where a zeroGradient BC is imposed on omega.
- adjointOutletFlux: Same as adjointOutletWa, but for cases in which back-flow is observed for U at the outlet.
- waWallFunction: Wall boundaries, where an omegaWallFunction BC is imposed on omega.
- adjointFarFieldTMVar2: Far-field boundaries where an inletOutlet or freestream BC is imposed on omega.

6.6 maboundary conditions

- fixedValue uniform 0: All boundaries with a non-constrained type.

$6.7 d a$ boundary conditions

- fixedValue uniform 0: All inlet and outlet boundaries.
- zeroGradient All wall boundaries.

Chapter 7

dynamicMeshDict

The setup of the volumetric B-splines morpher is explained in detailed in section 7.1. Setting up a Laplace-based grid displacement PDE for use in conjunction with $2 D$ Bézier-Bernstein parameterizations in presented in section 7.2 .

7.1 Volumetric B-splines Morpher

7.1.1 Control points and B-splines properties

Before executing the actual optimisation loop, some pre-processing steps have to be undertaken in order to define the control points, the coordinates of which will act as the design variables of the optimisation problem. The mathematical background of the volumetric B-splines morpher is presented in detail in [8] and some basic definitions are repeated herein in the sake of completeness.

Let $b_{m}^{i j k}, m \in[1,3], i \in[0, I], j \in[0, J], k \in[0, K]$ be the Cartesian coordinates of the $i j k$-th control point of the $3 D$ structured control grid, fig. 7.1. I, J and K are the number of control points (minus 1) per control grid direction. The Cartesian coordinates $\mathbf{x}=\left[x_{1}, x_{2}, x_{3}\right]^{T}=[x, y, z]^{T}$ of a CFD mesh point residing within the boundaries defined by the control grid are given by

$$
\begin{equation*}
x_{m}(u, v, w)=\sum_{i=0}^{I} \sum_{j=0}^{J} \sum_{k=0}^{K} U_{i, p u}(u) V_{j, p v}(v) W_{k, p w}(w) b_{m}^{i j k} \tag{7.1}
\end{equation*}
$$

Here, $\mathbf{u}=\left[u_{1}, u_{2}, u_{3}\right]^{T}=[u, v, w]^{T}$ are the mesh point parametric coordinates, U, V, W are the B-splines basis functions and $p u, p v, p w$ their respective degrees, which may be different per control grid direction.

Details about B-splines basis definitions and properties can be found in [9]. Computing the Cartesian coordinates of any parameterized mesh point is straightforward, at a negligible computational cost, as long as its parametric coordinates \mathbf{u} are known.

Mesh parametric coordinates can be computed with accuracy, since a mapping from $\Re^{3}(x, y, z) \rightarrow \Re^{3}(u, v, w)$ is required. This means that volumetric B-splines can reproduce any geometry to machine accuracy.

Given the control points position, the knot vectors and the basis functions degrees, the parametric coordinates (u, v, w) of a point with Cartesian coordinates $\mathbf{r}=$ $\left[x_{r}, y_{r}, z_{r}\right]^{T}$ can be computed by solving the system of equations

$$
\mathbf{R}(u, v, w)=\left[\begin{array}{l}
x(u, v, w)-x_{r}=0 \tag{7.2}\\
y(u, v, w)-y_{r}=0 \\
z(u, v, w)-z_{r}=0
\end{array}\right]
$$

where $x_{m}(u, v, w)$ are computed through eq. (7.1), based on the known \mathbf{b} values. The 3×3 system of eq. (7.2) can be solved independently for each parameterized mesh point using the Newton-Raphson method, after computing and inverting the Jacobian $\partial x_{m} / \partial u_{j}, m, j \in[1,3]$. Since the evaluation of the parametric coordinates of each point is independent from any other mesh point, these computations may run efficiently in parallel.

The aforementioned process has to be done only once and can be seen as the "training phase" of the method. Then, after moving the control points \mathbf{b}, the Cartesian coordinates of each (internal or boundary) mesh point residing within the control grid can be computed through eq. (7.1) at a very low cost, making volumetric B-splines a powerful surface parameterization and mesh displacement tool.

The parameters for the volumetric B-splines morpher are defined in the constant/dynamicMeshDict dictionary. A sample of the latter (excluding the header) is given below, with some comments on its entries

```
solver volumetricBSplinesMotionSolver;
volumetricBSplinesMotionSolverCoeffs
{
    duct
    {
        type cartesian;
        nCPsU 9;
        nCPsV 5;
        nCPsW 3;
        degreeU 3;
        degreeV 3;
        degreeW 2;
        controlPointsDefinition axisAligned;
        lowerCpBounds ( (-1.1 -0.21 -0.05);
        upperCpBounds ( 1.1 0.39 0.15);
```


Figure 7.1: Control grid consisting of $6 \times 6 \times 6$ control points, around a $3 D$ wing. Control points are coloured based their j index value. Surface and volume mesh points, over and around the wing, residing within the boundaries of the control grid (black box) will be displaced following a possible displacement of the control points.

```
        confineUMovement false;
        confineVMovement false;
        confineWMovement true;
        confineBoundaryControlPoints false;
        confineUMinCPs ( (true true true) (true true true) );
        confineUMaxCPs ( (true true true) (true true true) );
        confineVMinCPs ( (true true true) );
        confineVMaxCPs ( (true true true) );
        confineWMinCPs ( (true true true) );
        confineWMaxCPs ( (true true true) );
    }
}
```

One morphing box, similar to that presented in fig. 7.1, will be created for each subDict within volumetricBSplinesMotionSolverCoeffs. More than one control boxes are supported, as long as they are not overlapping.

7.1.1.1 Entries in each dict within volumetricBSplinesMotionSolverCoeffs

type (cartesian, cylindrical)
Coordinate system in which the control points are defined.
controlPointsDefinition (axisAligned, fromFile)
Control points can be defined in two different ways. If the axisAligned option is chosen, a control grid aligned with the coordinates system defined by type will be constructed, by giving the coordinates of the two far points of the box in lowerCpBounds and upperCpBounds, similar, for instance, to the way the boxToCell option is used in topoSetDict. If the fromFile option is chosen, control points are read from the constant/controlPoints/"name""timeName" file, where name is the name of the morphing box (i.e. the name of the current subDict within volumetricBSplinesMotionSolverCoeffs) and timeName is the current time index (0 if the optimisation is starting from scratch). The above-mentioned file, apart from the typical OpenFOAM header, should include a vectorList of the following format

```
controlPoints 27
(
( 0.133 -0.255 0.699 )
( 0.2015 -0.255 0.699 )
( }0.27-0.255 0.699 )
( 0.133 0 0.699 )
( }0.2015000.699 )
( 0.27 0 0.699 )
( }\begin{array}{lll}{0.133}&{0.255}&{0.699}\end{array}
( }\begin{array}{lll}{0.2015}&{0.255}&{0.699 )}
( }0.270.255 0.699 )
( 0.133 -0.255 0.789 )
( }\begin{array}{lll}{0.2015}&{-0.255}&{0.789}\end{array}
( }\begin{array}{lll}{0.27}&{-0.255}&{0.789}\end{array}
( 0.133 0 0.789 )
( }0.2015000.789 )
( }0.27000.789 )
( }\begin{array}{llll}{0.133}&{0.255}&{0.789}\end{array}
( }0.20150.255 0.789 )
( }0.270.255 0.789 ) 
( 0.133 -0.255 0.879 )
( }0.2015-0.255 0.879 ) 
( }\begin{array}{lll}{0.27}&{-0.255}&{0.879}\end{array}
( }\begin{array}{llll}{0.133}&{0}&{0.879 )}
( 0.2015 0 0.879 )
```

```
( llll}0.27\quad0.0.879 )
( }\begin{array}{lll}{0.133}&{0.255}&{0.879}\end{array}
( llll}0.2015 0.255 0.879 ) 
( }\begin{array}{lll}{0.27}&{0.255}&{0.879}\end{array}
);
```

i.e., a vectorList named controlPoints, followed by the control points number and the actual list of points. It should be noted that the order in which the points are written is important and should be given by an iso-z, iso-y, iso-x loop (or an iso-W, iso-V, iso-U loop, in the most general case).
$n C P s U, n C P s V, n C P s W$
Number of control points in the parametric directions, i.e. $I+1, J+1$ and $K+1$ in eq. 7.1 .
degreeU, degreeV, degreeW
Basis function degrees in the three parametric coordinates (i.e. $p u, p v$ and $p w$ in eq. 7.1). Regarding the choice of the basis functions degrees, a smaller polynomial degree will lead to more localized (and less smooth) geometry changes. The maximum degree per direction is $n C P s-1$, which will lead to a parameterization in which all control points affect all CFD grid points inside the parameterized domain. The suggested basis function degree is 3 since it gives the highly desirable property of local support while at the same time maintains smoothness.
confineUMovement, confineVMovement, confineWMovement (true|false)
Whether to confine or not the movement of all control points in each of the directions of the coordinate system defined by type. The corresponding entries in v1912 were named confineX1movement, confineX2movement, confineX3movement and are still supported.
confineBoundaryControlPoints (true|false)
When the control box separates the mesh in parameterized and non-parameterized regions, the boundary control points of the control grid have to be fixed in order to ensure C0 continuity at the interface of the two regions. This will ensure that mesh elements will not overlap in the boundaries of the control grid, however, gradient and curvature continuity might not be guaranteed. If these are of importance, the following lists should be set accordingly:
confineUMinCPs, confineUMaxCPs, confineVMinCPs, confineVMaxCPs, confineWMinCPs, confineWMaxCPs (empty lists)
More layers of control points can be kept fixed during the optimisation. The number of control points to be kept fixed in each of the (U, V, W) control grid directions (at the be-
ginning -Min- and end -Max- of the control grid) can be controlled by the confine*CPs variables. Each of these entries is a boolListList, i.e. a list of lists, containing three bools each. A typical example of such an entry reads

```
confineUMinCPs ((true true true) (true true true) );
```

In this example, the movement of the first two columns of control points (corresponding to the two triplets of booleans) in the beginning (confineUMinCPs) of the U direction (confineUMinCPs) of the control grid is constrained in all three spatial directions (each one corresponding to one of the three booleans in each triplet). All confine*CPs entries are initialized to empty lists, meaning that no control points will be kept fixed if the entries are not provided. The corresponding entries in v1912 were named bound*CPs and are still supported.

shapeOptimisation/sbend/laminar/opt/unconstrained/BFGS

readStoredData (true|false)
If readStoredData is set to true, the code will attempt to read the parametric coordinates from a file named parametricCoordinate+name, where name is the name of the current subDict within volumetricBSplinesMotionSolverCoeffs, if the file exists. Otherwise, the parametric coordinates will be computed anew. For more information, see section 7.1.1.2.
maxIterations (default=10)
Maximum number of Newton-Raphson iterations to be executed for each CFD grid point inside the control box in order to compute its parametric coordinates.

```
tolerance (default=1.e-10)
```

Convergence criterion for the Newton-Raphson procedure executed to compute CFD grid point parametric coordinates.

7.1.1.2 Computing parametric coordinates

The parametric coordinates for the points residing within the control boxes are computed by solving a 3×3 system for each point, eq. 7.2 . This has to be done only once, as a pre-processing step of the optimisation loop. This will be done automatically by the executable driving the optimisation or the one that computes sensitivity derivatives. Since this step can be potentially expensive for large CFD meshes and a high number of control points, the parametric coordinates are stored as a pointVectorField in the 0 folder, named parametricCoordinates"name", where name is the control box name (i.e. name of the corresponding subDict within volumetricBSplinesMotionSolverCoeffs). If
the entry readStoredData is set to true, the code will attempt to read a stored parametric coordinates file. If the file is not present, parametric coordinates will be computed from scratch.

Since the parametric coordinates depend on the control points positions and the degrees of the basis functions, the parametricCoordinates* files have to either be removed manually from the starting time-step folder, or the readStoredData entry has to be set to false each time the control points setup is altered.

7.1.1.3 Visualizing the control points

It is often useful to visualize the control points comprising the control grid before running the optimisation loop. This can be done by running the writeMorpherCPs application, see section 8.2.1.2. writeMorpherCPs reads dynamicMeshDict and produces the optimisation/controlPoints/"name""TimeName".csv file, where name is the name of control box and TimeName the current time index. The file contains 9 columns, including the (x, y, z) coordinates of the control points, their (i, j, k) values in the structured control grid and 3 active flags indicating whether each control point is allowed to move in each of the 3 directions defined by type (see section 7.1.1.1) during the optimisation. The $c s v$ file can be visualized in Paraview following the steps listed below:

- Open the file from the File/Open menu and click Apply
- From the Filters/Alphabetical menu, choose TableToPoints
- Select Points:0, Points:1, Points:2 for the X, Y and Z Column, respectively, and click Apply.
- Adjust the size and colouring of the points according to your preference.

Apart from generating a $c s v$ file before running the optimisation loop, similar files are generated and stored in the same folder for visualization purposes each time a new geometry is created during the optimisation process.
shapeOptimisation/sbend/laminar/opt/unconstrained/BFGS

7.1.1.4 Continuing an optimisation loop using volumetric B-splines

This section covers the scenario of wishing to continue a job which has already ran for a number of optimisation cycles, using the volumetric B-splines parameterization and assuming that the initial setup used the axisAligned option for the controlPointsDefinition (section 7.1.1). If the second job is submitted using axisAligned as well,
then the code will disregard the already updated control point positions, as computed by the previous optimisation cycles, and wrongly re-use the ones suggested by the \{lower,upper\}CpBounds. Instead, for the second job, the fromFile option should be used for the controlPointsDefinition, continuing the optimisation from the point it terminated during the first job. An example of the steps to be followed can be found in the Allrun script of the following tutorial

shapeOptimisation/sbend/turbulent/opt/BFGS-continuation

7.2 Laplace-based Grid Displacement Equation

In case an automatic optimisation loop is targeted for (2D) geometries that have been parameterized using Bézier-Bernstein curves, the boundary movement has to be propagated to the interior mesh. This can be done using a Laplace-based PDE and the mesh movement solvers already existing in OpenFOAM. In particular, the velocityLaplacian mesh motion solver is proposed, set up as

```
dynamicFvMesh dynamicMotionSolverFvMesh;
motionSolverLibs ("libfvMotionSolvers.so");
solver velocityLaplacian;
velocityLaplacianCoeffs
{
    diffusivity uniform;
}
```

It should be noted that the velocityLaplacian motion solver can cope with mesh movement in relatively simple geometries but usually faces difficulties in complicated boundary movements or fine meshes used for low-Re simulations. Using a diffusivity option that is based on the inverse distance from the moved boundaries usually improves the results. A pointVectorField named pointMotionU should be supplied, with zero fixedValue conditions for all patches expect the coupled ones. The appropriate boundary conditions for the movement in each optimisation cycle will be set automatically by the code. A cellMotionU entry should also be set in fuSolution.solvers while the default entry in system.fuSchemes.laplacianSchemes should suffice for the discretization of the PDE.

Chapter 8

Applications

8.1 solvers

8.1.1 adjointOptimisationFoam

adjointOptimisationFoam is the main executable. It can be used either to just solve the primal and adjoint equations and compute sensitivities or to execute an automated shape optimisation loop. Its behaviour largely depends on the setup of the optimisationDict, as described in chapter2. In the sections that follow, the differences between the two above-mentioned modes of operation are briefly discussed.

8.1.1.1 Solution of the primal and adjoint equations and computation of sensitivities

In this mode, adjointOptimisationFoam functions in a way similar to simpleFoam, with the ability to also solve the adjoint equations. It should be noted that the endTime entry in controlDict will be ignored and the nIters entry in optimisationDict (sections 2.2.1.1 and 2.3.1.1.3, for each primal and adjoint solver, will be used to define the number of iterations to be executed and the endTime. All primal solvers for which the active keyword is set to true will be executed, followed by the adjoint ones and, finally, the computation of sensitivity derivatives for all adjoint solvers for which the computeSensitivities flag is true (section 2.3.1.1). Equations for all active primal and adjoint solvers will be iterated either until the residual values declared in residualControl (sections 2.2.1.1 and 2.3.1.1.3) have been achieved or the nIters value has been reached. Upon stopping, each solver will write results to the hard drive, with writing also performed based on the writeInterval defined in controlDict. During the solution of the primal equations, if the active keyword of the adjointSolvers is set to true, the objective values defined in those adjointSolvers will be evaluated during each iteration of the primal
solver and their values will be written in optimisation/objective/timeName/objectiveName+Instant+adjointSolverName.
sensitivityMaps/naca0012/turbulent/liftMinimumSetup

8.1.1.2 Automated shape optimisation loops

In this mode, adjointOptimisationFoam undertakes the execution of an automated shape optimisation loop (i.e. solve the primal and adjoint equations, compute sensitivity derivatives, update the geometry and mesh for n optimisation cycles), fig. 8.1. In order to do so, the optimisationManager entry in optimisationDict should be set to steadyOptimisation. The endTime in controlDict now stands for the number of optimisation cycles to be conducted, while the writeInterval entry defines the optimisation cycles interval in which (primal and adjoint) flow results will be stored to the hard drive. It is recommended to set purgeWrite 0 ; and writeInterval 1 ; in controlDict in order to store results from all the geometries analyzed during the optimisation loop. The objective functions convergence is written in the optimisation/objective/timeName/objectiveName+adjointSolverName whereas the convergence of objective function values within the iterations of the primal solver for all optimisation cycles is stored in optimisation/objective/timeName/objectiveName+Instant+adjointSolverName.
shapeOptimisation/sbend/laminar/opt/unconstrained/BFGS

8.2 utilities

A number of pre- and post-processing utilities related to adjoint-based optimisation exist. These are briefly analyzed in what follows.

8.2.1 preProcessing

8.2.1.1 writeActiveDesignVariables

This utility gathers the IDs of the active design variables, for instance, as defined by the confine* and bound*CPs options in case of a volumetric B-splines morpher (section 7.1), and writes them in the appropriate place within the subDict pertaining to the updateMethod defined in optimisationDict (section 2.4.3). In v1912, it was mandatory to run this utility before adjointOptimisationFoam in combination with most updateMethods. However, since $v 2006$, this is no longer necessary.

8.2.1.2 writeMorpherCPs

The writeMorpherCPs utility is used to output the volumetric B-splines morpher control points, as defined by the current setup in dynamicMeshDict in a form that is convenient for visualization, section7.1.1.3. It should be noted that only the control point positions are written, without computing the parametric coordinates of CFD grid points residing within the control points box.

8.2.2 postProcessing

8.2.2.1 computeSensitivities

The computeSensitivities utility is used to compute sensitivity derivatives at a postprocessing step, for a simulation in which the primal and adjoint fields have already been computed but, for instance, computeSensitivities was set to false. The appropriate dictionary entries must be defined, as discussed in section 2.4.1. Remember to also set the computeSensitivities to true in the adjoint solver dicts, section 2.3.1.

8.2.2.2 cumulativeDisplacement

This utility is used to compute and write the displacement of all mesh points for each geometry generated by an optimisation loop, from the initial geometry. The vectorial difference of all mesh points $\left(x_{i}^{\text {new }}-x_{i}^{\text {old }}\right)$ is written in a pointVectorField named displacement whereas the projection of this difference to the normal vector of the boundary mesh points in the initial geometry $\left(\left(x_{i}^{\text {new }}-x_{i}^{\text {old }}\right) n_{i}^{\text {old }}\right)$ is written in a pointScalarField named normalDisplacement. Keeping in mind the convention for the surface normal unit vector, facing from the fluid to the solid boundaries, positive normal displacements indicate a movement aligned to the geometry normal ("inwards" or "outwards", for external or internal aerodynamics, respectively); negative normal displacements indicate a movement opposite to the geometry normal ("outwards" or "inwards" for external or internal aerodynamics, respectively).
shapeOptimisation/sbend/laminar/opt/unconstrained/BFGS

Figure 8.1: The adjoint-based shape optimisation loop executed by adjointOptimisationFoam when run in steadyOptimisation mode.

Bibliography

[1] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. Computer Journal, 7:149-154, 1964.
[2] I.S. Kavvadias, E.M. Papoutsis-Kiachagias, G. Dimitrakopoulos, and K.C. Giannakoglou. The continuous adjoint approach to the $\mathrm{k}-\omega$ sst turbulence model with applications in shape optimization. Engineering Optimization, 47(11):1523-1542, 2015.
[3] I.S. Kavvadias, E.M. Papoutsis-Kiachagias, and K.C. Giannakoglou. On the proper treatment of grid sensitivities in continuous adjoint methods for shape optimization. Journal of Computational Physics, 301:1-18, 2015.
[4] J. Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of Computation, 35(151):773-782, 1980.
[5] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, New York, 1999.
[6] E.M. Papoutsis-Kiachagias. Adjoint methods for turbulent flows, applied to shape or topology optimization and robust design. PhD thesis, National Technical University of Athens, 2013.
[7] E.M. Papoutsis-Kiachagias and K.C. Giannakoglou. Continuous adjoint methods for turbulent flows, applied to shape and topology optimization: Industrial applications. 23(2):255-299, 2016.
[8] E.M. Papoutsis-Kiachagias, N. Magoulas, J. Mueller, C. Othmer, and K.C. Giannakoglou. Noise reduction in car aerodynamics using a surrogate objective function and the continuous adjoint method with wall functions. Computers \& Fluids, 122:223-232, 2015.
[9] L. Piegl and W. Tiller. The NURBS book. Springer, 1997.
[10] J.B. Rosen. The gradient projection method for nonlinear programming. part i. linear constraints. SIAM Journal on Applied Mathematics, 8:181-217, 1960.
[11] A.S. Zymaris, D.I. Papadimitriou, K.C. Giannakoglou, and C. Othmer. Continuous adjoint approach to the Spalart-Allmaras turbulence model for incompressible flows. Computers \& Fluids, 38(8):1528-1538, 2009.

[^0]: ${ }^{1}$ Prof. K.C. Giannakoglou, Dr. E.M. Papoutsis-Kiachagias, N. Galanos
 ${ }^{2}$ support: vpapout@mail.ntua.gr

