Bibliography
[1]

R. Barrett, M. Berry, T.F. Chan, J. Demmel, J.M. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994.

[2]

J. Boussinesq. Essai sur la théorie des eaux courantes. Imprimerie Nationale, Paris, France, 1877.

[3]

J. Crank and P. Nicolson. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Mathematical Proceedings of the Cambridge Philosophical Society, 43(1):50–67, 1947.

[4]

A.A. Dafa'Alla, E. Juntasaro, and M.M. Gibson. Calculation of oscillating boundary layers with the q-ζ turbulence model. Engineering Turbulence Modelling and Experiments, pages 141–150, 1996.

[5]

B.J. Daly and F.H. Harlow. Transport Equations in Turbulence. The Physics of Fluids, 13(11), 1970.

[6]

L. Davidson, P.V. Nielsen, and A. Sveningsson. Modifications of the v2-f Model for Computing the Flow in a 3d Wall Jet. Turbulence Heat and Mass Transfer 4, pages 577–584, 2003.

[7]

S.H. El Tahry. k-epsilon equation for compressible reciprocating engine flows. 7(4):345–353, 1983.

[8]

E. Fares and W. Schroder. A differential equation for appropximate wall distance. International Journal for Numerical Methods in Fluids, 39:743–762, 2002.

[9]

J. Furst. Numerical simulation of transitional flows with laminar kinetic energy. Engineering Mechanics, 20(5):379–388, 2013.

[10]

M.M. Gibson and A.A. Dafa'Alla. Two-equation model for turbulent wall flow. AIAA Journal, 33(8):1514–1518, 1995.

[11]

M.M. Gibson and B. Launder. Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer. Journal of Fluid Mechanics, 86(3):491–511, 1978.

[12]

M.S. Gritskevich, A.V. Garbaruk, J. Schütze, and F.R. Menter. Development of DDES and IDDES Formulations for the k-w Shear Stress Transport Model. Flow, Turbulence and Combustion, 88(3):431–449, 2012.

[13]

Ami Harten. High Resolution Schemes for Hyperbolic Conservation Laws. Journal of computational physics, 49(3):357–393, 1983.

[14]

A. Hellsten. Some Improvements in Menter's k - w SST Turbulence Model. In 29th AIAA Fluid Dynamics Conference, volume AIAA-98-2554, Albuquerque, NM, June 1997.

[15]

H. Jasak, H. G. Weller, and A.D. Gosman. High Resolution NVD Differencing Scheme for Arbitrarily Unstructured Meshes. International Journal for Numerical Methods in Fluids, 31:431–449, 1999.

[16]

W-W Kim and S. Menon. A new dynamic one-equation subgrid-scale model for large eddy simulations. In 33rd Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 1995.

[17]

R.B. Langtry and F.R. Menter. Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA Journal, 47(12):2894–2906, 2009.

[18]

R.B. Langtry. A Correlation-Based Transition Model using Local Variables for Unstructured Parallelized CFD codes. PhD Thesis, Stuttgart, Germany, 2006.

[19]

B.E. Launder and D.B. Spalding. The numerical computation of turbulent flows. Computer methods in applied mechanics and engineering, 3(2):269–289, 1974.

[20]

B.E. Launder, G.J. Reece, and W. Rodi. Progress in the Development of a Reynolds-Stress Turbulence Closure. Journal of Fluid Mechanics, 68:537–566, 1975.

[21]

M. Lee and R.D. Moser. Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200. Journal of Fluid Mechanics, 774:395–415, 2015.

[22]

B.P. Leonard. A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer methods in applied mechanics and engineering, 19(1):59–98, 1979.

[23]

B.P. Leonard. Simple high-accuracy resolution program for convective modelling of discontinuities. International Journal for Numerical Methods in Fluids, 8(10), 1988.

[24]

F. S. Lien and G. Kalitzin. Computations of transonic flow with the v2-f turbulence model. International Journal of Heat and Fluid Flow, 22(1):53–61, 2001.

[25]

F. S. Lien and M. A. Leschziner. A Pressure-Velocity Solution Strategy for Compressible Flow and Its Application to Shock/Boundary-Layer Interaction Using Second-Moment Turbulence Closure. Journal of Fluids Engineering, 115(4):717–725, 1993.

[26]

F. S. Lien and M. A. Leschziner. Upstream monotonic interpolation for scalar transport with application to complex turbulent flows. International Journal for Numerical Methods in Fluids, 19(6):527–548, 1994.

[27]

F. S. Lien, W.L. Chen, and M. A. Leschziner. Low-Reynolds-Number Eddy-Viscosity Modelling Based on Non-Linear Stress-Strain/Vorticity Relations. Engineering Turbulence Modelling and Experiments 3, pages 91–100, 1996.

[28]

F. Menter and T. Esch. Elements of Industrial Heat Transfer Predictions. Uberlandia, Brazil, 2001.

[29]

F.R. Menter, M. Kuntz, and R. Langtry. Ten years of industrial experience with the SST turbulence model. In Proceedings of the fourth international symposium on turbulence, heat and mass transfer, pages 625–632, Antalya, Turkey, 2003. Begell House.

[30]

F.R. Menter, R. Langtry, and S. Volker. Transition Modelling for General Purpose CFD Codes. Flow, Turbulence and Combustion, 77(1):277–303, 2006.

[31]

NASA Langley Research Center. The Menter Shear Stress Transport Turbulence Model, 2015.

[32]

F. Nicoud and F. Ducros. Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor. Flow Turbulence and Combustion, 62(3):183–200, 1999.

[33]

R. Poletto, T. Craft, and A. Revell. A New Divergence Free Synthetic Eddy Method for the Reproduction of Inlet Flow Conditions for LES. Flow, Turbulence and Combustion, 91(3):519–539, 2013.

[34]

T.H. Shih, J. Zhu, and J. Lumley. A Realizable Reynolds Stress Algebraic Equation Model. NASA Technical Memorandum 105993, 1993.

[35]

T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, and J. Zhu. A new k-e eddy viscosity model for high:reynolds number turbulent flows. Computers and Fluids, 24(3):227–238, 1995.

[36]

J. Smagorinsky. General Circulation Experiments with the Primitive Equations I. the Basic Experiment*. Monthly Weather Review, 91(3):99–164, 1963.

[37]

P.R. Spalart and S.R. Allmaras. A One-Equation Turbulence Model for Aerodynamic Flows. Recherche Aerospatiale, 1:5–21, 1994.

[38]

P.R. Spalart, W-H Jou, M. Strelets, and S.R. Allmaras. Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES. In Advances in DNS/LES, pages 137–147, Columbus, OH, USA, 1997. Greyden Press.

[39]

P.R. Spalart, S. Deck, M.L. Shur, K.D. Squires, M.K. Strelets, and A. Travin. A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities. Theoretical and Computational Fluid Dynamics, 20(3):181–195, 2006.

[40]

P. Spalart, M.L. Shur, M. Strelets, and A. Travin. Sensitivity of Landing-Gear Noise Predictions by Large-Eddy Simulation to Numerics and Resolution. In Aerospace Sciences Meetings, Nashville, Tennessee, 2012.

[41]

D.B. Spalding. A novel finite difference formulation for differential expressions involving both first and second derivatives. International Journal for Numerical Methods in Engineering, 4(4):551–559, 1972.

[42]

D.B. Spalding. Calculation of turbulent heat transfer in cluttered spaces. In Proceedings of the 10th International Heat Transfer Conference, Brighton, UK, 1994.

[43]

C.G. Speziale, S. Sarker, and T.B. Gatski. Modelling the pressure-strain correlation of turbulence. An invariant dynamical systems approach. Journal of Fluid Mechanics, 227:245–272, 1991.

[44]

M. Strelets. Detached eddy simulation of massively separated flows. In 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 2001.

[45]

A. Travin, M. Shur, M. Strelets, and P.R. Spalart. Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows. In Advances in LES of Complex Flows, volume 65 of Fluid Mechanics and Its Applications, pages 239–254, Munich, Germany, 2000. Springer Netherlands.

[46]

P.G. Tucker. Differential equation-based wall distance computation for DES and RANS. Journal of computational physics, 190(1):229–248, 2003.

[47]

H.A. van der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 13(2):631–644, 1992.

[48]

B. van Leer. Towards the Ultimate Conservative Difference Scheme. II. Monotonicity and Conservation Combined in a Second-order Scheme. Journal of computational physics, 14(4):361–370, 1974.

[49]

K. Walters and D. Cokljat. A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow. 130(12), 2008.

[50]

R.F. Warming and M. Beam. Upwind Second-Order Difference Schemes and Applications in Aerodynamic Flows. AIAA Journal, 14(9):1241–1249, 1976.

[51]

A. Yoshizawa. Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Physics of Fluids, 29(7):2152–2164, 1986.