Bibliography

- [1]
R. Barrett, M. Berry, T.F. Chan, J. Demmel, J.M. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst.

*Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition*. SIAM, Philadelphia, PA, 1994.- [2]
J. Boussinesq.

*Essai sur la théorie des eaux courantes*. Imprimerie Nationale, Paris, France, 1877.- [3]
J. Crank and P. Nicolson. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type.

*Mathematical Proceedings of the Cambridge Philosophical Society*, 43(1):50–67, 1947.- [4]
A.A. Dafa'Alla, E. Juntasaro, and M.M. Gibson. Calculation of oscillating boundary layers with the q-ζ turbulence model.

*Engineering Turbulence Modelling and Experiments*, pages 141–150, 1996.- [5]
B.J. Daly and F.H. Harlow. Transport Equations in Turbulence.

*The Physics of Fluids*, 13(11), 1970.- [6]
L. Davidson, P.V. Nielsen, and A. Sveningsson. Modifications of the v2-f Model for Computing the Flow in a 3d Wall Jet.

*Turbulence Heat and Mass Transfer 4*, pages 577–584, 2003.- [7]
S.H. El Tahry. k-epsilon equation for compressible reciprocating engine flows. 7(4):345–353, 1983.

- [8]
E. Fares and W. Schroder. A differential equation for appropximate wall distance.

*International Journal for Numerical Methods in Fluids*, 39:743–762, 2002.- [9]
J. Furst. Numerical simulation of transitional flows with laminar kinetic energy.

*Engineering Mechanics*, 20(5):379–388, 2013.- [10]
M.M. Gibson and A.A. Dafa'Alla. Two-equation model for turbulent wall flow.

*AIAA Journal*, 33(8):1514–1518, 1995.- [11]
M.M. Gibson and B. Launder. Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer.

*Journal of Fluid Mechanics*, 86(3):491–511, 1978.- [12]
M.S. Gritskevich, A.V. Garbaruk, J. Schütze, and F.R. Menter. Development of DDES and IDDES Formulations for the k-w Shear Stress Transport Model.

*Flow, Turbulence and Combustion*, 88(3):431–449, 2012.- [13]
Ami Harten. High Resolution Schemes for Hyperbolic Conservation Laws.

*Journal of computational physics*, 49(3):357–393, 1983.- [14]
A. Hellsten. Some Improvements in Menter's k - w SST Turbulence Model. In

*29th AIAA Fluid Dynamics Conference*, volume AIAA-98-2554, Albuquerque, NM, June 1997.- [15]
H. Jasak, H. G. Weller, and A.D. Gosman. High Resolution NVD Differencing Scheme for Arbitrarily Unstructured Meshes.

*International Journal for Numerical Methods in Fluids*, 31:431–449, 1999.- [16]
W-W Kim and S. Menon. A new dynamic one-equation subgrid-scale model for large eddy simulations. In

*33rd Aerospace Sciences Meeting and Exhibit*, Reno, NV, USA, 1995.- [17]
R.B. Langtry and F.R. Menter. Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes.

*AIAA Journal*, 47(12):2894–2906, 2009.- [18]
R.B. Langtry.

*A Correlation-Based Transition Model using Local Variables for Unstructured Parallelized CFD codes*. PhD Thesis, Stuttgart, Germany, 2006.- [19]
B.E. Launder and D.B. Spalding. The numerical computation of turbulent flows.

*Computer methods in applied mechanics and engineering*, 3(2):269–289, 1974.- [20]
B.E. Launder, G.J. Reece, and W. Rodi. Progress in the Development of a Reynolds-Stress Turbulence Closure.

*Journal of Fluid Mechanics*, 68:537–566, 1975.- [21]
M. Lee and R.D. Moser. Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200.

*Journal of Fluid Mechanics*, 774:395–415, 2015.- [22]
B.P. Leonard. A stable and accurate convective modelling procedure based on quadratic upstream interpolation.

*Computer methods in applied mechanics and engineering*, 19(1):59–98, 1979.- [23]
B.P. Leonard. Simple high-accuracy resolution program for convective modelling of discontinuities.

*International Journal for Numerical Methods in Fluids*, 8(10), 1988.- [24]
F. S. Lien and G. Kalitzin. Computations of transonic flow with the v2-f turbulence model.

*International Journal of Heat and Fluid Flow*, 22(1):53–61, 2001.- [25]
F. S. Lien and M. A. Leschziner. A Pressure-Velocity Solution Strategy for Compressible Flow and Its Application to Shock/Boundary-Layer Interaction Using Second-Moment Turbulence Closure.

*Journal of Fluids Engineering*, 115(4):717–725, 1993.- [26]
F. S. Lien and M. A. Leschziner. Upstream monotonic interpolation for scalar transport with application to complex turbulent flows.

*International Journal for Numerical Methods in Fluids*, 19(6):527–548, 1994.- [27]
F. S. Lien, W.L. Chen, and M. A. Leschziner. Low-Reynolds-Number Eddy-Viscosity Modelling Based on Non-Linear Stress-Strain/Vorticity Relations.

*Engineering Turbulence Modelling and Experiments 3*, pages 91–100, 1996.- [28]
F. Menter and T. Esch. Elements of Industrial Heat Transfer Predictions. Uberlandia, Brazil, 2001.

- [29]
F.R. Menter, M. Kuntz, and R. Langtry. Ten years of industrial experience with the SST turbulence model. In

*Proceedings of the fourth international symposium on turbulence, heat and mass transfer*, pages 625–632, Antalya, Turkey, 2003. Begell House.- [30]
F.R. Menter, R. Langtry, and S. Volker. Transition Modelling for General Purpose CFD Codes.

*Flow, Turbulence and Combustion*, 77(1):277–303, 2006.- [31]
NASA Langley Research Center. The Menter Shear Stress Transport Turbulence Model, 2015.

- [32]
F. Nicoud and F. Ducros. Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor.

*Flow Turbulence and Combustion*, 62(3):183–200, 1999.- [33]
R. Poletto, T. Craft, and A. Revell. A New Divergence Free Synthetic Eddy Method for the Reproduction of Inlet Flow Conditions for LES.

*Flow, Turbulence and Combustion*, 91(3):519–539, 2013.- [34]
T.H. Shih, J. Zhu, and J. Lumley. A Realizable Reynolds Stress Algebraic Equation Model. NASA Technical Memorandum 105993, 1993.

- [35]
T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, and J. Zhu. A new k-e eddy viscosity model for high:reynolds number turbulent flows.

*Computers and Fluids*, 24(3):227–238, 1995.- [36]
J. Smagorinsky. General Circulation Experiments with the Primitive Equations I. the Basic Experiment*.

*Monthly Weather Review*, 91(3):99–164, 1963.- [37]
P.R. Spalart and S.R. Allmaras. A One-Equation Turbulence Model for Aerodynamic Flows.

*Recherche Aerospatiale*, 1:5–21, 1994.- [38]
P.R. Spalart, W-H Jou, M. Strelets, and S.R. Allmaras. Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES. In

*Advances in DNS/LES*, pages 137–147, Columbus, OH, USA, 1997. Greyden Press.- [39]
P.R. Spalart, S. Deck, M.L. Shur, K.D. Squires, M.K. Strelets, and A. Travin. A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities.

*Theoretical and Computational Fluid Dynamics*, 20(3):181–195, 2006.- [40]
P. Spalart, M.L. Shur, M. Strelets, and A. Travin. Sensitivity of Landing-Gear Noise Predictions by Large-Eddy Simulation to Numerics and Resolution. In

*Aerospace Sciences Meetings*, Nashville, Tennessee, 2012.- [41]
D.B. Spalding. A novel finite difference formulation for differential expressions involving both first and second derivatives.

*International Journal for Numerical Methods in Engineering*, 4(4):551–559, 1972.- [42]
D.B. Spalding. Calculation of turbulent heat transfer in cluttered spaces. In

*Proceedings of the 10th International Heat Transfer Conference*, Brighton, UK, 1994.- [43]
C.G. Speziale, S. Sarker, and T.B. Gatski. Modelling the pressure-strain correlation of turbulence. An invariant dynamical systems approach.

*Journal of Fluid Mechanics*, 227:245–272, 1991.- [44]
M. Strelets. Detached eddy simulation of massively separated flows. In

*39th Aerospace Sciences Meeting and Exhibit*, Reno, NV, USA, 2001.- [45]
A. Travin, M. Shur, M. Strelets, and P.R. Spalart. Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows. In

*Advances in LES of Complex Flows*, volume 65 of*Fluid Mechanics and Its Applications*, pages 239–254, Munich, Germany, 2000. Springer Netherlands.- [46]
P.G. Tucker. Differential equation-based wall distance computation for DES and RANS.

*Journal of computational physics*, 190(1):229–248, 2003.- [47]
H.A. van der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems.

*SIAM Journal on Scientific and Statistical Computing*, 13(2):631–644, 1992.- [48]
B. van Leer. Towards the Ultimate Conservative Difference Scheme. II. Monotonicity and Conservation Combined in a Second-order Scheme.

*Journal of computational physics*, 14(4):361–370, 1974.- [49]
K. Walters and D. Cokljat. A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow. 130(12), 2008.

- [50]
R.F. Warming and M. Beam. Upwind Second-Order Difference Schemes and Applications in Aerodynamic Flows.

*AIAA Journal*, 14(9):1241–1249, 1976.- [51]
A. Yoshizawa. Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling.

*Physics of Fluids*, 29(7):2152–2164, 1986.